Journal of Nonlinear Mathematical Physics

Volume 8, Issue Supplement, February 2001, Pages 106 - 111

Painlevé Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrödinger Equation

Authors
P.G. Estévez, G.A. Hernáez
Corresponding Author
P.G. Estévez
Available Online 1 February 2001.
DOI
10.2991/jnmp.2001.8.s.19How to use a DOI?
Abstract

The real version of a (2 + 1) dimensional integrable generalization of the nonlinear Schrödinger equation is studied from the point of view of Painlevé analysis. In this way we find the Lax pair, Darboux transformations and Hirota's functions as well as solitonic and dromionic solutions from an iterative procedure.

Copyright
© 2006, the Authors. Published by Atlantis Press.
Open Access
This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
8 - Supplement
Pages
106 - 111
Publication Date
2001/02/01
ISBN
91-631-0262-5
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.2991/jnmp.2001.8.s.19How to use a DOI?
Copyright
© 2006, the Authors. Published by Atlantis Press.
Open Access
This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - P.G. Estévez
AU  - G.A. Hernáez
PY  - 2001
DA  - 2001/02/01
TI  - Painlevé Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrödinger Equation
JO  - Journal of Nonlinear Mathematical Physics
SP  - 106
EP  - 111
VL  - 8
IS  - Supplement
SN  - 1776-0852
UR  - https://doi.org/10.2991/jnmp.2001.8.s.19
DO  - 10.2991/jnmp.2001.8.s.19
ID  - Estévez2001
ER  -