Ideal Generated by The Coefficient of a Polynomial Over ℤk, k > 1
Authors
Larasati Onna Roufista, Indriati Nurul Hidayah
Corresponding Author
Larasati Onna Roufista
Available Online 11 May 2021.
- DOI
- 10.2991/assehr.k.210508.079How to use a DOI?
- Keywords
- polynomial ring ℤk, k > 1, Ideal c(f), unit, relative prime
- Abstract
Let ℤk, k > 1, k ∈ ℕ be a commutative ring with unity, polynomial f = a0 + a1x + ⋯ + anxn ∈ ℤk[x], ai ∈ ℤk. We can construct c(f) = 〈a0,⋯,an〉 be an ideal of ℤk generated by a0,⋯,an. If (a0,⋯,an) = 1 or ai unit of ℤk for i =0,…,n, then c(f) = ℤk, for k composite. For k is prime, because all of the elements in ℤk is unit, then c(f) = ℤk, for every f ∈ ℤk[x].
- Copyright
- © 2021, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Larasati Onna Roufista AU - Indriati Nurul Hidayah PY - 2021 DA - 2021/05/11 TI - Ideal Generated by The Coefficient of a Polynomial Over ℤk, k > 1 BT - Proceedings of the 1st International Conference on Mathematics and Mathematics Education (ICMMEd 2020) PB - Atlantis Press SP - 304 EP - 307 SN - 2352-5398 UR - https://doi.org/10.2991/assehr.k.210508.079 DO - 10.2991/assehr.k.210508.079 ID - Roufista2021 ER -