Journal of Statistical Theory and Applications

Volume 17, Issue 4, December 2018, Pages 686 - 702

On the Lindley Record Values and Associated Inference

Authors
A. Fallah1, A. Asgharzadeh2, *, S.M.T.K. MirMostafaee2
1Department of Statistics, Faculty of Mathematics and Statistics, Payame Noor University, Tehran, Iran
2Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
*

Corresponding author. Email: a.asharzadeh@umz.ac.ir

Received 15 July 2016, Accepted 2 November 2017, Available Online 31 December 2018.
DOI
10.2991/jsta.2018.17.4.10How to use a DOI?
Keywords
Best linear invariant estimators; Best linear unbiased estimators; Lindley distribution; Double moments; Pivotal quantity; Prediction; Record values; Single moments
Abstract

In this paper, we discuss the record values arising from the Lindley distribution. We compute the means, variances and covariances of the record values. These values are used to compute the best linear unbiased estimators (BLUEs) and the best linear invariant estimators (BLIEs) of the location and scale parameters. By using the BLUEs and BLIEs, we construct confidence intervals for the location and scale parameters through Monte Carlo simulations. Prediction for the future records is also discussed.

Copyright
© 2018 The Authors. Published by Atlantis Press SARL.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

1. INTRODUCTION

Let X1,X2, be a sequence of independent and identically distributed (IID) random variables with cumulative distribution function (cdf) Fx and probability density function (pdf) fx. An observation Xj is an upper record value of this sequence if it exceeds in value all preceding observations, i.e., if Xj>Xi,i<j. Lower records are analogously defined. Generally, if Un,n1 is defined by

U1=1,Un=max{j:jUn1,XjXUn1},
then the sequence XUn,n1 provides a sequence of upper record statistics. The sequence Un,n1 represents the upper record times. From the above definition, the sequence of record statistics can be viewed as order statistics from a sample whose size is determined by the values and the order of occurrence of the observations. Note that from a sequence of n IID continuous random variables, only about log(n) records are expected, see Houchens [1].

Chandler [2] defined the model of record statistics as a model for successive extremes in a sequence of IID random variables. These statistics are of interest and important in many real life applications involving data relating to weather, economics, sport and life testing studies. For more details and applications regarding record values, see Ahsanullah [3], Arnold et al. [4] and Nevzorov [5].

Recently, the Lindley distribution has received a considerable attention in the statistical literature. It was first proposed by Lindley [6] in the context of Bayesian inference. The pdf of the Lindley distribution is given by

f(x)=θ2θ+1(1+x)eθx,x>0,θ>0,
and the corresponding cdf is
Fx=1θ+1+θxθ+1eθx,  x>0,θ>0.

A distribution that is close in form to Eq. (2) is the well-known exponential distribution with pdf

fx=θeθx,  x>0,θ>0.

Ghitany et al. [7] showed in many ways that the Lindley distribution is a better model than one based on the exponential distribution. The shape of the hazard rate function of the Lindley distribution is an increasing function. This distribution belongs to an exponential family and it can be written as a mixture of an exponential and a gamma distribution with shape parameter 2. In recent years, this distribution has been studied and extended by many authors [7; 8; 9; 10; 11; 12; 13; 14].

Recently, some work has been done on inferential procedures for the Lindley distribution based on complete and censored data [15; 16; 17; 18; 19]. Recently, Asgharzadeh et al. [20] discussed the maximum likelihood and Bayesian estimation of the shape parameter of the Lindley distribution based on upper records. In this article, we consider the upper record values from the Lindley distribution. We compute the means, variances and covariances of the upper record values. Then, we use these moments to calculate best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) for the location and scale parameters of the Lindley distribution. Prediction for the future records is also discussed. Ahsanullah [21] and Dunsmore [22] discussed the BLUEs and prediction of future record values from a two-parameter exponential distribution. Some work in this direction has been done for the logistic distribution by Balakrishnan et al. [23], for the normal distribution by Balakrishnan and Chan [24], for the generalized exponential distribution by Raqab [25], for the gamma distribution by Sultan et al. [26] and for the Nadarajah-Haghighi distribution by MirMostafaee et al. [27].

In this paper, we consider the upper record values from the Lindley distribution. In Section 2, we compute the means, variances and covariances of record values up to sample size 6. Next, in Section 3, we obtain the BLUEs and BLIEs of the location and scale parameters of the Lindley distribution. The BLUEs and BLIEs are then used to construct the confidence intervals (CIs) for the location and scale parameters. In Section 4, we discuss point and interval predictions for future records. In Section 5, two numerical examples are given to illustrate the estimation and prediction methods discussed in this paper. In Section 6, Monte Carlo simulations are performed to compare the proposed CIs of the location and scale parameters and also to compare the prediction intervals (PIs) of the future records.

2. MOMENTS OF THE UPPER RECORD VALUES

Let XU1,XU2,XUn be the first n upper record values from the Lindley distribution. Then the pdf of XUn is given by [4]

fnx=1Γn[log{1Fx}]n1fx,  x>0,n=1,2,
where f and F are given by Eqs. (2) and (3), respectively. The joint pdf of XUm and XUn is given by
fm,n(x,y)=1Γ(m)Γ(nm)[log{1F(x)}]m1f(x)1F(x)×[log{1F(y)}+log {1F(x)}]nm1f(y),0<x<y<,m=1,2,,m<n.

Then, the rth single moment of XU(n) denoted by μnrr=0,1,2, is given by

μnr=EXUnr=0xrfnxdx=0xrθ21+xΓnθ+1log(θ+1+θxθ+1)+θxn1eθxdx=1n1!i=0n1n1igi,n,r,θ,
where
gi,n,r,θ=θ2θ+10xr[log{1+θx/θ+1}]i(θx)ni11+xeθxdx.

Note that using the transformation y=1+θx/θ+1, we can write gi,n,r,θ as

g(i,n,r,θ)=(θ+1)ni+r1θreθ+11[log y]i(y1)ni+r1e(θ+1)y[(θ+1)y1]dy=(θ+1)ni+rθreθ+1×[q=1ni+r+1(ni+rq1)(1)n+rq+11[log y]iyq1e(θ+1)ydy+θθ+1q=1ni+r(ni+r1q1)(1)n+rq1[log y]iyq1e(θ+1)ydy]=(θ+1)ni+rθreθ+1×[q=1ni+r+1(ni+rq1)(1)n+rq+1iqi{(θ+1)qΓ(q,θ+1)}+θθ+1q=1ni+r(ni+r1q1)(1)n+rqiqi{(θ+1)qΓ(q,θ+1)}],
where the last equality is calculated by considering the Eq. (4.358.1) in Gradshteyn and Ryzhik [28]. Here Γ, denotes the incomplete gamma function given by
Γν,λ=λxν1exdx.

Let us now consider the double moments of the upper record values XUm and XUn,m<n. The double r,sth moment of XUn and XUn is given by

μm,nr,s=EXUmrXUns=0xxrysfm,nx,ydydx,
0<x<y<,m=1,2,,  m<n,r,s=0,1,2,.

For the Lindley distribution, we obtain

μm,nr,s=θ4ΓmΓnmθ+10xxryslogθ+1+θxθ+1+θy+θyxnm1×logθ+1+θxθ+1+θxm11+x1+yeθyθ+1+θxdydx.

In general, the double moment in Eq. (4) cannot be obtained in a closed form, but for the special case when n=m+1, we can obtain a simplified closed form (see Appendix A).

Through numerical integration, we can determine the means, μn, variances σn2=μn2μn2n=1,2,, and covariances σm,n=μm,nμmμn(m<n); of record statistics, respectively. Table 1 presents the values of μn for n=116 for different values of the shape parameter θ. Table 2 provides the variances and covariances of record statistics for m=116;n=m+116 and θ=0.50.54.5. The values of means, variances and covariances for n7 are computed but not presented here. All the computations were done by using Maple 16. It may be observed from Table 1, that the mean decreases when θ increases, also it increases when n increases. From Table 2, the variance and covariance decrease when θ increases. Also, the variances increase when n increases.

n θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3 θ = 3.5 θ = 4 θ = 4.5
1 3.333 1.500 0.933 0.666 0.514 0.416 0.349 0.300 0.262
2 6.069 2.819 1.785 1.289 1.002 0.816 0.686 0.591 0.518
3 8.577 4.052 2.594 1.886 1.473 1.204 1.015 0.876 0.770
4 10.969 5.236 3.375 2.466 1.933 1.584 1.338 1.157 1.018
5 13.288 6.389 4.138 3.034 2.384 1.957 1.657 1.434 1.263
6 15.559 7.520 4.888 3.594 2.830 2.327 1.972 1.709 1.507
Table 1

Means of record statistics.

m n θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3 θ = 3.5 θ = 4 θ = 4.5
1 1 7.5556 1.7500 0.7288 0.3888 0.2383 0.1597 0.1138 0.0850 0.0657
1 2 6.8964 1.6323 0.6904 0.3724 0.2300 0.1550 0.1110 0.0832 0.0645
1 3 6.5612 1.5655 0.6668 0.3616 0.2244 0.1518 0.1090 0.0818 0.0635
1 4 6.3579 1.5227 0.6509 0.3541 0.2203 0.1493 0.1075 0.0808 0.0628
1 5 6.2208 1.4929 0.6395 0.3486 0.2172 0.1475 0.1062 0.0800 0.0628
1 6 6.1216 1.4709 0.6309 0.3444 0.2148 0.1460 0.1053 0.0793 0.0618
2 2 12.639 3.0513 1.3096 0.7138 0.4444 0.3012 0.2167 0.1629 0.1266
2 3 12.027 2.9267 1.2648 0.6932 0.4334 0.2949 0.2127 0.1603 0.1248
2 4 11.656 2.8467 1.2346 0.6788 0.4256 0.2902 0.2097 0.1582 0.1234
2 5 11.406 2.7910 1.2130 0.6682 0.4196 0.2865 0.2074 0.1566 0.1223
2 6 11.225 2.7500 1.1967 0.6600 0.4150 0.2836 0.2055 0.1553 0.1213
3 3 17.192 4.2143 1.8333 1.0102 0.6344 0.4331 0.3133 0.2366 0.1846
3 4 16.663 4.0993 1.7896 0.9892 0.6228 0.4261 0.3089 0.2336 0.1825
3 5 16.306 4.0193 1.7583 0.9737 0.6142 0.4208 0.3054 0.2312 0.1808
3 6 16.047 3.9603 1.7347 0.9619 0.6074 0.4166 0.3026 0.2293 0.1794
4 4 21.546 5.3189 2.3300 1.2919 0.8155 0.5592 0.4060 0.3075 0.2406
4 5 21.085 5.2152 2.2893 1.2717 0.8037 0.5519 0.4012 0.3042 0.2384
4 6 20.752 5.1387 2.2586 1.2562 0.7952 0.5466 0.3978 0.3019 0.2366
5 5 25.800 6.3933 2.8120 1.5650 0.9912 0.6816 0.4962 0.3767 0.2952
5 6 25.393 6.2996 2.7744 1.5460 0.9803 0.6742 0.4913 0.3733 0.2927
6 6 29.994 7.4496 3.2850 1.8327 1.1635 0.8017 0.5846 0.4445 0.3489
Table 2

Variances and covariances of record statistics.

3. LINEAR ESTIMATORS

Let YU1,YU2,YUn be the first n upper record values from the three parameter Lindley distribution with pdf

fYy=θ2σ2θ+1σ+yμeθyμσ,  y>μ,σ>0,θ>0,
and let XUi=YUiμσ,i=,1,2,,n be the corresponding upper record values from the standard Lindley distribution with pdf given in Eq. (2). Following the generalized least-squares approach, the BLUEs of μ and σ can be derived as [29]
μ^BLU=i=1naiYUi,σ^BLU=i=1nbiYUi,
where
a=a1,,an=αβ1α1β1αβ11αβ1αβ1α1β11(αβ11)2,
and
b=b1,,bn=1β11αβ11β1α1β1αβ1α1β11(αβ11)2,

α=α1,α2,,αn is the moment vector with αi=EXUi and β=βi,j,1ijn is the covariance matrix with βi,j=CovXUi,XUj, and 1=(1,1,,1)1×n.

Furthermore, the variances of these BLUEs are given by

Varμ^BLU=αβ1ααβ1α1β11(αβ11)2σ2=V1σ2,
Varσ^BLU=1β11αβ1α1β11(αβ11)2σ2=V2σ2,
and
Covμ^BLU,σ^BLU=αβ11αβ1α1β11(αβ11)2σ2=V3σ2.

The coefficients ai's, bi's, 1in and the values of V1, V2 and V3 are computed and presented in Tables 3-5, respectively. From Table 5, we note that the variances of the BLUEs decrease as n increases.

n θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3 θ = 3.5 θ = 4 θ = 4.5
2 2.2184 2.1369 2.0949 2.0698 2.0536 2.0428 2.0352 2.0295 2.0245
−1.2184 −1.1369 −1.0949 −1.0698 −1.0536 −1.0428 −1.0352 −1.0295 −1.0245
3 1.6086 1.5680 1.5472 1.5351 1.5268 1.5207 1.5173 1.5148 1.5133
0.0564 0.0404 0.0310 0.0228 0.0188 0.0168 0.0133 0.0106 0.0074
−0.6650 −0.6085 −0.5774 −0.5580 −0.5456 −0.5375 −0.5307 −0.5254 −0.5207
4 1.3957 1.3721 1.3604 1.3536 1.3487 1.3452 1.3433 1.3421 1.3410
0.0526 0.0367 0.0267 0.0198 0.0165 0.0146 0.0109 0.0077 0.0059
0.0223 0.0173 0.0136 0.0113 0.0086 0.0060 0.0070 0.0078 0.0073
−0.4707 −0.4262 −0.4008 −0.3848 −0.3739 −0.3659 −0.3613 −0.3577 −0.3543
5 1.2850 1.2710 1.2646 1.2611 1.2585 1.2563 1.2556 1.2550 1.2532
0.0506 0.0347 0.0250 0.0183 0.0149 0.0128 0.0105 0.0070 0.0030
0.0223 0.0171 0.0132 0.0107 0.0090 0.0065 0.0067 0.0074 0.0062
0.0108 0.0090 0.0075 0.0064 0.0040 0.0047 0.0009 0.0017 0.0151
−0.3688 −0.3320 −0.3104 −0.2967 −0.2865 −0.2803 −0.2737 −0.2712 −0.2776
Table 3

Coefficients for the BLUEs of μ.

n θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3 θ = 3.5 θ = 4 θ = 4.5
2 −0.3655 −0.7579 −1.1731 −1.6048 −2.0491 −2.5031 −2.9647 −3.4317 −3.9016
0.3655 0.7579 1.1731 1.6048 2.0491 2.5031 2.9647 3.4317 3.9016
3 −0.1889 −0.3881 −0.5968 −0.8131 −1.0352 −1.2608 −1.4910 −1.7236 −1.9602
−0.0036 −0.0074 −0.0107 −0.0131 −0.0151 −0.0183 −0.0187 −0.0203 −0.0174
0.1925 0.3956 0.6076 0.8263 1.0503 1.2791 1.5098 1.7439 1.9776
4 −0.1292 −0.2639 −0.4041 −0.5486 −0.6964 −0.8466 −1.0002 −1.1554 −1.3115
−0.0025 −0.0051 −0.0072 −0.0088 −0.0109 −0.0132 −0.0119 −0.0110 −0.0119
−0.0002 −0.0009 −0.0020 −0.0032 −0.0037 −0.0036 −0.0071 −0.0099 −0.0101
0.1320 0.2700 0.4134 0.5607 0.7111 0.8636 1.0194 1.1764 1.3335
5 −0.0989 −0.2013 −0.3071 −0.4159 −0.5269 −0.6395 −0.7540 −0.8711 −0.9915
−0.0020 −0.0039 −0.0055 −0.0067 −0.0077 −0.0089 −0.0106 −0.0085 −0.0012
−0.0002 −0.0007 −0.0015 −0.0023 −0.0045 −0.0047 −0.0063 −0.0087 −0.0060
0.0003 0.0003 −0.00004 −0.0006 0.0011 0.0001 0.0026 0.0025 −0.0137
0.1008 0.2057 0.3143 0.4257 0.5381 0.6530 0.7684 0.8858 1.0125
Table 4

Coefficients for the BLUEs of σ.

n θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3 θ = 3.5 θ = 4 θ = 4.5
2 18.6661 4.0041 1.6012 0.8333 0.5030 0.3335 0.2358 0.1750 0.1068
0.8553 0.8828 0.9050 0.9215 0.9351 0.9454 0.9536 0.9597 0.9636
−3.0922 −1.4135 −0.8897 −0.6406 −0.4978 −0.4056 −0.3413 −0.2941 −0.2577
2.2462 1.1335 0.7385 0.5434 0.4292 0.3537 0.3005 0.2592 0.2277
3 13.5075 2.9438 1.1861 0.6201 0.3750 0.2489 0.1762 0.1310 0.1009
0.4226 0.4347 0.4453 0.4539 0.4607 0.4663 0.4706 0.4748 0.4779
−1.5981 −0.7242 −0.4529 −0.3248 −0.2514 −0.2042 −0.1715 −0.1480 −0.1298
1.0724 0.5430 0.3581 0.2660 0.2109 0.1743 0.1487 0.1297 0.1147
4 11.7063 2.5784 1.0444 0.5476 0.3318 0.2206 0.1561 0.1161 0.0895
0.2810 0.2880 0.2946 0.3000 0.3045 0.3083 0.3112 0.3139 0.3161
−1.0929 −0.4927 −0.3067 −0.2192 −0.1692 −0.1373 −0.1150 −0.0990 −0.0868
0.6940 0.3516 0.2323 0.1743 0.1390 0.1156 0.0981 0.0860 0.0801
5 10.7697 2.3899 0.9718 0.5107 0.3099 0.2061 0.1461 0.1087 0.0833
0.2110 0.2157 0.2201 0.2240 0.2272 0.2298 0.2323 0.2342 0.2347
−0.8369 −0.3759 −0.2332 −0.1662 −0.1281 −0.1037 −0.0869 −0.0746 −0.0645
0.5101 0.2584 0.1733 0.1290 0.1029 0.0858 0.0737 0.0640 0.0537

Note: For each nn=2,,5), the first, second, third and the fourth lines represent V1=1σ2Varμ^BLU, V2=1σ2Varσ^BLU, V3=1σ2Covμ^BLU,σ^BLU and V4, respectively.

Table 5

Variances and covariances of the BLUEs of μ and σ in terms of σ2 and V4.

Based on the BLUEs of the location and scale parameters, the CIs for μ and σ can be constructed through the pivotal quantities given by

R1=μ^BLUμσ^BLUV1 and R2=σ^BLUσσV2.

Constructing such CIs requires then percentage the points of R1 and R2 which can be computed by using the BLUEs μ^BLU and σ^BLU via Monte Carlo method. In Table 6, we have determined the percentage points of R1 and R2 based on 10 000 runs and different values of n and θ. Based on these simulated percentage points, we can determine a 1001α% CI for μ through the pivotal quantity R1 as follows

Pμ^BLUσ^BLUV1R11α/2μμ^BLUσ^BLUV1R1α/2=1α,
where R1γ is the left percentage point of R1 at γ, i.e., P(R1<R1γ)=γ.

Similarly, a 1001α% CI for σ can be constructed through the pivotal quantity R2 as follows

Pσ^BLU1+V2R21α/2σσ^BLU1+V2R2α/2=1α.

R1 R2
θ n 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
0.5 2 −0.7440 −0.7155 14.492 26.198 −1.0478 −1.0213 1.9622 2.6028
3 −0.8658 −0.8346 4.8155 7.6618 −1.3099 −1.2264 1.9176 2.4617
4 −0.9355 −0.9016 3.9282 5.5012 −1.4486 −1.3088 1.8902 2.3525
5 −0.9773 −0.9332 3.2299 4.5157 −1.5113 −1.3567 1.8260 2.3621
1 2 −0.7280 −0.7038 13.305 30.067 −1.0378 −1.0041 1.9768 2.5454
3 −0.8464 −0.8227 5.2436 7.8190 −1.3088 −1.2210 1.8889 2.4898
4 −0.9030 −0.8733 3.6417 5.4939 −1.4414 −1.2896 1.8967 2.3361
5 −0.9404 −0.9018 3.1786 4.7170 −1.5085 −1.3516 1.8264 2.2896
1.5 2 −0.7174 −0.6948 13.769 25.300 −1.0205 −0.9960 1.9763 2.6424
3 −0.8291 −0.8042 4.6772 7.4613 −1.2891 −1.2059 1.9158 2.4790
4 −0.8848 −0.8631 3.8001 5.5215 −1.4325 −1.3015 1.8816 2.3670
5 −0.9198 −0.8902 3.1424 4.5661 −1.4954 −1.3501 1.8362 2.3643
2 2 −0.7110 −0.6905 12.911 29.571 −1.0165 −0.9825 1.9599 2.5509
3 −0.8249 −0.8003 4.8515 7.8426 −1.2871 −1.1963 1.9217 2.4887
4 −0.8781 −0.8474 3.8368 5.4495 −1.4125 −1.3013 1.8700 2.4487
5 −0.9055 −0.8821 3.3815 4.5120 −1.4831 −1.3580 1.8812 2.2959
2.5 2 −0.7061 −0.6846 13.532 24.754 −1.0049 −0.9816 1.9843 2.6678
3 −0.8142 −0.7911 4.6038 7.3439 −1.2746 −1.1912 1.9176 2.4850
4 −0.8689 −0.8476 3.7523 5.3652 −1.4201 −1.2933 1.8914 2.3739
5 −0.8992 −0.8737 3.0930 4.5540 −1.4836 −1.3446 1.8430 2.3753
3 2 −0.7042 −0.6832 12.743 26.604 −1.0038 −0.9713 1.9557 2.5370
3 −0.8134 −0.7910 4.7970 7.5683 −1.2730 −1.1860 1.9253 2.4916
4 −0.8659 −0.8354 3.7999 5.4028 −1.4223 −1.2896 1.8683 2.4701
5 −0.8927 −0.8694 3.3642 4.5019 −1.4798 −1.3543 1.8802 2.3110
3.5 2 −0.7006 −0.6797 11.786 24.528 −0.9955 −0.9666 2.0320 2.6852
3 −0.8074 −0.7856 4.6534 7.2653 −1.2652 −1.1790 1.9438 2.4921
4 −0.8627 −0.8371 3.7762 5.2676 −1.4081 −1.2911 1.9073 2.3811
5 −0.8905 −0.8639 3.1165 4.5332 −1.4773 −1.3310 1.8715 2.3824
4 2 −0.6986 −0.6781 13.615 28.989 −0.9966 −0.9713 1.9175 2.5425
3 −0.8077 −0.7839 5.1292 7.5166 −1.2635 −1.1831 1.9524 2.4930
4 −0.8590 −0.8376 3.5764 5.3673 −1.3959 −1.2822 1.9260 2.4645
5 −0.8863 −0.8140 1.9541 4.4724 −1.4698 −1.3271 1.8644 2.3214
4.5 2 −0.6974 −0.6768 11.708 24.395 −0.9905 −0.9620 2.0339 2.6996
3 −0.8029 −0.7804 4.6256 7.2221 −1.2576 −1.1724 1.9455 2.4970
4 −0.8561 −0.8314 3.7530 5.3086 −1.3999 −1.2862 1.9036 2.3828
5 −0.8866 −0.8609 3.1101 4.5284 −1.4740 −1.3323 1.8860 2.3939
Table 6

Simulated percentage points of R1 and R2.

Now, let us consider the BLIEs of μ and σ. Based on the results of Mann [30], the BLIEs for μ and σ are (see also [4], p. 143)

μ^BLI=μ^BLUV31+V2σ^BLU and σ^BLI=σ^BLU1+V2,
where V1=1σ2Varμ^BLU, V2=1σ2Varσ^BLU and
V3=1σ2Covμ^BLU,σ^BLU.

Furthermore the variances of these BLIEs are given by (see Arnold et al. [4], p. 143)

Varμ^BLI=σ2V1V322+V2(1+V2)2and Varσ^BLI=σ2V2(1+V2)2.

Based on the BLIEs, we can again construct CIs for the location and scale parameters through pivotal quantities given by

R3=μ^BLIμσ^BLIV1V322+V2(1+V2)2and R4=σ^BLIσσV21+V2.

Table 7 presents the percentage points of R3 and R4 based on 10,000 runs and different choices of n and θ. With the BLIEs and the use of Table 7, we can determine a 1001α% CI for μ through the pivotal quantity R3 as

P(μ^BLIσ^BLIV1V32(2+V2)(1+V2)2R3(1α/2) μμ^BLIσ^BLIV1V32(2+V2)(1+V2)2R3(α/2))=1α,

R3 R4
θ n 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
0.5 2 −0.7192 −0.6654 28.847 62.296 −1.9750 −1.9440 1.0862 1.7186
3 −0.8521 −0.8038 8.1365 12.851 −1.9613 −1.8648 1.3133 1.8644
4 −0.9076 −0.8575 5.3955 8.0337 −1.9595 −1.8304 1.3756 1.8680
5 −0.9494 −0.8981 4.1167 5.8680 −1.9598 −1.8096 1.4121 1.8921
1 2 −0.7166 −0.6676 29.839 61.833 −1.9773 −1.9486 0.9652 1.6058
3 −0.8298 −0.7854 8.4338 12.824 −1.9744 −1.8783 1.2793 1.7441
4 −0.8847 −0.8414 5.33826 7.7013 −1.9625 −1.8453 1.3580 1.8268
5 −0.9195 −0.8769 4.25628 6.0973 −1.9563 −1.8040 1.3949 1.8661
1.5 2 −0.7145 −0.6753 27.652 55.661 −1.9727 −1.9445 1.0212 1.6648
3 −0.8232 −0.7870 8.0750 12.324 −1.9601 −1.8716 1.2314 1.7524
4 −0.8707 −0.8317 5.1743 7.9021 −1.9593 −1.8315 1.3280 1.8161
5 −0.9036 −0.8643 4.2503 5.9628 −1.9602 −1.7976 1.4296 1.9293
2 2 −0.7137 −0.6689 29.571 61.791 −1.9764 −1.9493 0.9459 1.5909
3 −0.8188 −0.7820 7.8548 12.669 −1.9664 −1.8770 1.2148 1.7904
4 −0.8659 −0.8324 5.2732 7.5969 −1.9651 −1.8405 1.3254 1.8318
5 −0.8971 −0.8627 4.1960 5.8944 −1.9663 −1.8263 1.4045 1.8859
2.5 2 −0.7103 −0.6684 28.695 56.244 −1.9737 −1.9464 1.0746 1.6639
3 −0.8173 −0.7803 7.5279 12.031 −1.9717 −1.8797 1.2505 1.7248
4 −0.8637 −0.8334 5.2897 7.9068 −1.9700 −1.8504 1.2999 1.7596
5 −0.8874 −0.8573 4.2208 5.9416 −1.9688 −1.8205 1.3881 1.8779
3 2 −0.7095 −0.6700 27.772 59.816 −1.9730 −1.9452 0.9777 1.6110
3 −0.8156 −0.7806 7.8232 12.635 −1.9624 −1.8745 1.2103 1.7864
4 −0.8567 −0.8272 5.2928 7.7807 −1.9664 −1.8263 1.3073 1.8655
5 −0.8878 −0.8573 4.0903 5.9822 −1.9646 −1.8219 1.3738 1.9174
3.5 2 −0.7119 −0.6713 28.026 59.938 −1.9737 −1.9483 1.0317 1.7035
3 −0.8122 −0.7744 7.7792 12.530 −1.9656 −1.8776 1.2310 1.8115
4 −0.8607 −0.8278 5.2559 7.8655 −1.9572 −1.8424 1.3075 1.8556
5 −0.8879 −0.8564 4.1511 5.9445 −1.9560 −1.8153 1.4402 1.9335
4 2 −0.7135 −0.6704 29.338 61.613 −1.9763 −1.9510 0.9379 1.5628
3 −0.8109 −0.7820 7.9785 12.891 −1.9664 −1.8858 1.2750 1.8004
4 −0.8568 −0.8233 5.2535 7.6812 −1.9626 −1.8359 1.3215 1.8401
5 −0.8831 −0.8545 4.2507 5.9219 −1.9621 −1.8221 1.4286 1.9605
4.5 2 −0.7128 −0.6725 28.003 59.957 −1.9737 −1.9488 1.0271 1.6993
3 −0.8113 −0.7753 8.1742 12.527 −1.9622 −1.8771 1.2054 1.7388
4 −0.8588 −0.8283 5.0210 7.5207 −1.9526 −1.8453 1.3567 1.8113
5 −0.8854 −0.8554 4.0604 5.9901 −1.9475 −1.8141 1.3953 1.9071
Table 7

Simulated percentage points of R3 and R4.

Similarly, we can determine a 1001α% CI for σ, through the pivotal quantity R4 as

Pσ^BLI1+V21+V2R41α/2σσ^BLI1+V21+V2R4α/2=1α.

Now, let us compare the BLUEs and BLIEs using the relative efficiency criterion (REC). Since the mean squared errors (MSEs) of BLUEs are equal to their corresponding variances, we have

MSEμ^BLU=σ2V1and MSEσ^BLU=σ2V2.

On the other hand, the MSEs of BLIEs of μ and σ can be obtained as

MSEμ^BLI=σ2V1V321+V2and MSEσ^BLI=σ2V21+V2.

Therefore, we can readily obtain the RECs of the BLIEs of μ and σ with respect to their corresponding BLUEs as follows

RECμ^BLI,μ^BLU=MSEμ^BLUMSEμ^BLI=V1V1V321+V21,RECσ^BLI,σ^BLU=MSEσ^BLUMSEσ^BLI=1+V21.

Therefore, both of the BLIEs of μ and σ perform better than the corresponding BLUEs in terms of MSEs.

4. LINEAR PREDICTORS

Suppose we have observed the first n upper records Y=YU1,YU2,YUn from the three parameter Lindley distribution with pdf given in Eq. (5) and our aim is to predict the next upper record Y=YUn+1. The best linear unbiased predictor (BLUP) of Y is given by (Arnold et al. [4], p. 150)

Y^BLUP=μ^BLU+σ^BLUαn+1+ωβ1Yμ^BLU1σ^BLUα,
where
ω=CovXU1,XUn+1,,CovXUn,XUn+1,
in which XUi=YUiμσ,i=,1,2,,n+1. Moreover, the mean squared prediction error (MSPE) of Y^BLUP is given by (Burkschat [31])

MSPEY^BLUP=E[Y^BLUPYUn+1)2=σ2[(1ωβ11)2V1+(αn+1ωβ1α)2V2ωβ1ω+21ωβ11αn+1ωβ1αV3+VarXUn+1].

Let us now consider the best linear invariant predictor (BLIP) of the next upper record value. From the results of Mann [30], the BLIP of Y can be obtained based on the BLUP of Y as follows (see also [4], p. 153)

Y^BLIP=Y^BLUPV41+V2σ^BLU,
where Y^BLUP is the BLUP of YUn+1 and
V4=1ωβ11V3+αn+1ωβ1αV2.

In Table 5, we reported the values of V4 for different values of n and θ.

The MSPE of Y^BLIP is given by (Burkschat [31])

MSPE(Y^BLIP)=E[(Y^BLIPYU(n+1))2]=σ2[αβ1α+1Δ(1ωβ11)2ωβ1ω+1β11Δ(αn+1ωβ1α)2+Var(XU(n+1))2αβ11Δ(1ωβ11)(αn+1ωβ1α)2],
where
Δ=αβ1α+11β11(αβ11)2.

Now we compare the BLUP and BLIP of Y using the REC. The REC of Y^BLIP relative to Y^BLUP is

RECY^BLIP,Y^BLUP=MSPEY^BLUPMSPEY^BLIP.

In Table 8, we presented the REC of Y^BLIP relative to Y^BLUP for different choices of n and θ. From Table 8, we observe that the BLIP works better than BLUP in terms of MSPE.

n θ = 0.5 θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3 θ = 3.5 θ = 4 θ = 4.5
2 1.3041 1.3126 1.2850 1.2667 1.2565 1.2503 1.2454 1.2363 1.2296
3 1.1105 1.1138 1.1026 1.0948 1.0892 1.0846 1.0840 1.0826 1.0813
4 1.0578 1.0594 1.0538 1.0490 1.0455 1.0440 1.0398 1.0408 1.0643
5 1.0357 1.0367 1.0328 1.0301 1.0278 1.0259 1.0259 1.0232 1.0048
Table 8

The REC of Y^BLIP with respect to Y^BLUP.

Suppose we are now interested in PIs for YUn+1. The PIs can be constructed using the pivotal quantities [24]

T1=YUn+1YUnσ^BLU,
and
T2=YUn+1YUnσ^BLI.

Constructing such PIs requires the percentage points of T1 and T2. In Table 9, we presented the simulated percentage points of T1 and T2 using Monte Carlo method based on 10,000 runs and different choices of n and θ. Using the pivotal quantity T1, a 1001α% PI for Y=YUn+1 is given by

PYUn+σ^BLUT11α/2YYUn+σ^BLUT1α/2=1α.

T1 T2
θ n 2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
0.5 2 0.0712 0.1413 39.647 76.692 0.1322 0.2622 73.555 142.290
3 0.0601 0.1207 14.392 20.527 0.0768 0.1837 22.327 32.855
4 0.0614 0.1257 10.878 15.6182 0.0782 0.1568 14.165 20.079
5 0.0516 0.1104 9.6559 12.550 0.0705 0.1456 11.467 15.348
1 2 0.0339 0.0681 20.278 42.555 0.0609 0.1228 40.294 88.631
3 0.0334 0.0660 7.1150 10.249 0.0399 0.0851 10.712 16.057
4 0.0312 0.0626 5.4481 7.5059 0.0384 0.0780 7.2854 10.282
5 0.0280 0.0555 4.7133 6.2944 0.0356 0.0740 5.7481 7.7365
1.5 2 0.0225 0.0451 13.594 26.469 0.0435 0.0874 25.909 54.927
3 0.0206 0.0452 4.9984 7.7554 0.0332 0.0633 7.2247 11.462
4 0.0205 0.0412 3.6181 5.0762 0.0281 0.0555 4.8975 6.6060
5 0.0190 0.0389 3.1497 4.2039 0.0236 0.0481 3.9040 5.2271
2 2 0.0154 0.0328 10.581 21.302 0.0264 0.0594 21.275 43.214
3 0.0145 0.0310 3.8087 3.8087 0.0229 0.0458 5.4379 8.4731
4 0.0147 0.0304 2.6935 3.6855 0.0208 0.0415 3.5587 5.0637
5 0.0144 0.0297 2.3256 3.1242 0.0202 0.0376 2.9245 3.9670
2.5 2 0.0129 0.0258 8.0905 16.145 0.0264 0.0515 16.379 34.770
3 0.0110 0.0235 2.9614 4.6853 0.0183 0.0359 4.3968 7.0489
4 0.0116 0.0224 2.2877 3.0986 0.0155 0.0311 2.9313 4.0433
5 0.0115 0.0223 1.9293 2.5587 0.0141 0.0278 2.3385 3.2454
3 2 0.0107 0.0208 6.7242 14.437 0.0188 0.0393 13.919 30.501
3 0.0105 0.0208 2.3687 3.5040 0.0129 0.0280 3.8110 5.7746
4 0.0096 0.0193 1.9203 2.7296 0.0112 0.0245 2.4994 3.5728
5 0.0091 0.0184 1.6067 2.1887 0.0111 0.0223 1.9888 2.7872
3.5 2 0.0089 0.0184 5.7860 12.1082 0.0185 0.0359 11.736 24.746
3 0.0082 0.0179 2.1454 3.3560 0.0132 0.0271 3.2235 5.1909
4 0.0081 0.0175 1.5263 2.1420 0.0114 0.0226 2.0896 2.8773
5 0.0079 0.0164 1.3732 1.8560 0.0108 0.0207 1.6497 2.3159
4 2 0.0078 0.0154 5.4120 11.3077 0.0137 0.0288 10.4154 23.0863
3 0.0074 0.0151 1.9758 2.7955 0.0102 0.0217 2.8633 4.4407
4 0.0071 0.0140 1.3406 1.8174 0.0090 0.0190 1.8185 2.5268
5 0.0070 0.0144 1.1706 1.5569 0.0079 0.0171 1.4869 2.0726
4.5 2 0.0071 0.0139 4.6528 9.6756 0.0141 0.0274 9.1362 18.999
3 0.0058 0.0122 1.6271 2.4055 0.0093 0.0191 2.4354 3.6441
4 0.0069 0.0137 1.2583 1.7334 0.0083 0.0168 1.6336 2.3774
5 0.0067 0.0128 1.0487 1.3822 0.0077 0.0157 1.3140 1.7646
Table 9

Simulated percentage points of T1 and T2.

Similarly, using the pivotal quantity T2, a 1001α% PI for Y is given by

PYUn+σ^BLIT21α/2YYUn+σ^BLIT2α/2=1α.

5. ILLUSTRATIVE EXAMPLES

In this section, we present two numerical examples for illustrative purposes.

5.1 Example 1 (Real Data)

Here, we consider the total annual rainfall (in inches) during March recorded at Los Angeles Civic Center from 1972 to 2006 (see the website of Los Angeles Almanac: www.laalmanac.com/weather/we08aa.htm). From these data, we observe the upper record values as follows:

2.70,3.78,4.83,8.02,8.37.

A simple plot of these five upper record values against the expected values in Table 1 for θ=1 indicates a very strong correlation (correlation coefficient as high as 0.972). Hence, the assumption that these record values come from a Lindley distribution with θ = 1 is quite reasonable. Based on these data and Tables 3 and 4, we find the BLUEs of μ and σ.

μ^BLU=a1YU1+a2YU2+a3YU3+a4YU4+a5YU5=1.2710×2.70+0.0347×3.78+0.0171×4.83+0.0090×8.020.3320×8.37=0.9388,
σ^BLU=b1YU1+b2YU2+b3YU3+b4YU4+b5YU5=0.2013×2.70+0.0039×3.78+0.0007×4.83+0.0003×8.02+0.2057×8.37=1.1625.
The corresponding variances and covariances of μ^BLU and σ^BLU (see Table 5) are computed to be:
Varμ^BLU=2.3899σ2,  Varσ^BLU=0.2157σ2,  Covμ^BLU,σ^BLU=0.3759σ2.

The BLIEs of the location and scale parameters are given by μ^BLI=1.2982 and σ^BLI=0.9562. The variances of μ^BLI and σ^BLI are

Varμ^BLI=2.2943σ2,  Varσ^BLI=0.1459σ2.

From Eqs. (6) and (8) and use of Tables 6 and 7, the 95% CIs for μ based on R1 and R3 are (− 6.3534, 2.3926) and (−7.5330, 2.6300), respectively. Also from Eqs. (7) and (9), the 95% CIs for σ based on R2 and R4 are (0.5633, 3.8827) and (0.6786, 4.6015), respectively.

Suppose that we want to find the BLUP of the next record YU6n+1=6 based on the first n=5 observed records. From Table 1 we have αn+1=α6=7.520 when θ=1. From Table 2 for θ=1, we have

ω=CovXU1,XU6,,CovXU5,XU6=1.4709,2.7500,3.9603,5.1387,6.2996,
the vector of observed records is Y=2.70,3.78,4.83,8.02,8.37 and the vector of standard means is (from Table 1)
α=1.500,2.819,4.052,5.236,6.389.
β5×5 is the variance-covariance matrix of the first five standard records which can obtained from Table 2. The BLUP of YU6 is Y^BLUP=9.6840. Also the BLIP of YU6 is Y^BLIP=9.4368. In addition, using Eqs. (10) and (11) and use of Table 9, the 95% PIs for the next upper record YU6 based on the pivotal quantity T1 and T2 are computed as
L1YU6,U1YU6=8.4025,15.687,
and
L2YU6,U2YU6=8.4040,15.768,
respectively.

5.2 Example 2 (Simulated Data)

For given values of θ=1.5,μ=0 and σ=1, we generated n=5 upper record values from the Lindley distribution as follows:

1.0773,3.1755,3.4962,4.5126,4.6015.

The BLUEs of μ and σ are computed to be μ^BLU=0.0934 and σ^BLU=1.0925. The corresponding variances and covariances of μ^BLU and σ^BLU are computed to be:

Varμ^BLU=0.9718,  Varσ^BLU=0.2201,  Covμ^BLU,σ^BLU=0.2332.

The BLIEs and the corresponding variances are

μ^BLI=0.3022,σ^BLI=0.8954
Varμ^BLI=0.9352,  Varσ^BLI=0.1478.

The 95% CIs for μ based on R1 and R3 are (−4.8243,1.0841) and (−4.8614,1.847), respectively. Also, the 95% CIs for σ based on R2 and R4 are (0.5179,3.6608) and (0.6272,4.4363), respectively.

Let us now consider the BLUP and BLIP of the next record, YU6. The BLUP and BLIP are Y^BLUP=5.4264 and Y^BLIP=5.2712, respectively. Moreover, the 95% PIs for the next upper record YU6 based on the pivotal quantities T1 and T2 are computed as

L1YU6,U1YU6=4.6223,9.1944,
and
L2YU6,U2YU6=4.6226,9.2820,
respectively.

6. SIMULATION

In this section, we carry out an intensive Monte Carlo simulation to compare different CIs presented in Section 3. In this simulation, we have randomly generated 10 000 upper record sample YU1,YU2,YUn from the standard Lindley distribution with different choices of n and θ. We then computed the 95% CIs for the location parameter μ based on the pivotal quantities R1 and R3. We also computed the 95% CIs for the scale parameter μ based on the pivotal quantities R2 and R4. Table 10 presents the average confidence lengths and the corresponding coverage probabilities over 10 000 replications.

μ σ
θ n R1 R3 R2 R4
AL CP AL CP AL CP AL CP
0.5 2 116.968 0.9541 133.501 0.9490 32.1525 0.9533 63.0546 0.9454
3 31.4461 0.9515 33.4645 0.9499 6.3723 0.9527 9.1189 0.9490
4 22.1436 0.9526 23.0607 0.9500 3.8845 0.9541 4.7927 0.9507
5 17.9984 0.9533 18.1236 0.9501 2.7875 0.9566 3.3262 0.9468
1 2 60.5284 0.9596 61.3064 0.9498 39.1433 0.9532 74.4361 0.9436
3 14.7719 0.9469 15.4661 0.9499 6.8716 0.9515 10.1473 0.9521
4 10.2411 0.9481 10.4097 0.9499 3.9601 0.9481 4.9239 0.9544
5 8.7077 0.9509 8.8175 0.9510 2.8429 0.9485 3.4934 0.9450
1.5 2 33.2921 0.9498 34.8740 0.9514 34.3637 0.9477 66.8064 0.9550
3 9.0784 0.9544 9.4398 0.9481 6.7328 0.9488 9.9251 0.9479
4 6.5841 0.9496 6.8003 0.9492 4.0801 0.9505 5.0701 0.9515
5 5.4468 0.9511 5.4691 0.9500 2.8973 0.9502 3.5035 0.9457
2 2 27.1318 0.9499 27.8236 0.9511 40.2612 0.9501 79.1642 0.9483
3 6.8626 0.9499 7.0130 0.9512 7.1925 0.9503 10.7277 0.9519
4 4.6924 0.9498 4.7060 0.9472 3.9994 0.9501 5.2650 0.9438
5 3.8978 0.9500 3.9028 0.9503 2.8952 0.9500 3.6018 0.9537
2.5 2 18.2254 0.9498 19.3539 0.9482 35.4389 0.9501 72.0573 0.9504
3 5.0056 0.9500 5.1745 0.9492 7.0564 0.9500 11.4473 0.9518
4 3.6115 0.9499 3.8093 0.9540 4.2128 0.9502 5.4784 0.9550
5 3.0177 0.9481 3.0396 0.9500 2.9284 0.9498 3.6385 0.9458
3 2 15.8027 0.9499 16.1069 0.9489 40.6387 0.9501 74.1516 0.9499
3 4.1521 0.9484 4.2726 0.9488 7.2285 0.9503 11.1147 0.9467
4 2.9453 0.9510 2.9559 0.9476 4.3355 0.9533 5.4733 0.9553
5 2.4669 0.9458 2.4707 0.9482 2.9882 0.9454 3.6971 0.9566
3.5 2 12.3725 0.9499 14.1363 0.9500 35.9585 0.9501 72.8842 0.9510
3 3.3948 0.9499 3.6863 0.9470 7.2159 0.9500 11.6175 0.9536
4 2.4362 0.9502 2.5758 0.9534 4.2576 0.9500 5.3757 0.9537
5 2.0773 0.9499 2.0885 0.9514 3.0120 0.9501 3.6965 0.9555
4 2 12.1945 0.9500 12.5072 0.9506 41.1703 0.9496 72.9495 0.9451
3 3.0108 0.9498 3.2115 0.9479 7.3866 0.9501 11.6581 0.9485
4 2.1256 0.9498 2.1618 0.9509 4.1769 0.9501 5.5760 0.9502
5 1.7783 0.9499 1.7858 0.9502 3.0125 0.9501 3.7677 0.9483
4.5 2 9.2964 0.9499 10.6092 0.9504 36.1874 0.9500 74.7037 0.9490
3 2.5535 0.9499 2.7794 0.9493 7.3018 0.9500 11.6565 0.9506
4 1.8548 0.9500 1.8588 0.9492 4.2612 0.9501 5.4964 0.9504
5 1.5655 0.9500 1.5823 0.9509 3.0399 0.9502 3.6726 0.9527
Table 10

Average length (ALs) and coverage probabilities (CPs) of 95% CIs based on R1, R2, R3 and R4.

From Table 10, it is observed that the average lengths of CIs for μ and σ using BLUEs (the pivotal quantities R1 and R2) are smaller than the corresponding average lengths obtained using BLIEs (the pivotal quantities R3 and R4). Also, the coverage probabilities of all CIs are quite close to the nominal level 95%. Also, all the CIs lengths decrease as n increases.

We also computed the 95% PIs for Y=YUn+1 based on the upper record sample YU1,YU2,YUn, by using the pivotal quantities T1 and T2. For various choices of n and θ, Table 11 presents the means and coverage probabilities of the lengths of the PIs. From Table 11, we note that the average lengths of the PIs using BLUP (the pivotal quantity T1) are smaller than the corresponding lengths obtained using BLIP (the pivotal quantity T2). Also, the lengths of PIs decrease as n increases.

θ n T1 T2
AL CP AL CP
0.5 2 77.144 0.9543 77.145 0.9522
3 20.512 0.9419 23.092 0.9449
4 15.647 0.9431 15.699 0.9435
5 12.397 0.9467 12.513 0.9463
1 2 42.748 0.9471 47.2928 0.9455
3 10.248 0.9532 11.199 0.9534
4 7.5315 0.9449 7.9066 0.9449
5 6.2920 0.9485 6.3604 0.9467
1.5 2 26.548 0.9574 28.921 0.9466
3 7.7232 0.9535 7.8957 0.9440
4 5.0579 0.9579 5.0833 0.9560
5 4.1784 0.9553 4.2582 0.9491
2 2 21.192 0.9483 22.376 0.9442
3 3.7841 0.9437 5.7966 0.9441
4 3.6817 0.9473 3.8702 0.9423
5 3.096 0.9455 3.2107 0.9477
2.5 2 16.0882 0.9425 17.9052 0.9466
3 4.7601 0.9433 4.8020 0.9456
4 3.0764 0.9465 3.0770 0.9467
5 2.5529 0.9480 2.6390 0.9480
3 2 14.512 0.9570 15.762 0.9554
3 3.4745 0.9564 3.6993 0.9578
4 2.7251 0.9522 2.7274 0.9509
5 2.1801 0.9485 2.2579 0.9482
3.5 2 12.1655 0.9426 12.7269 0.9464
3 3.3610 0.9458 3.5346 0.9484
4 2.1383 0.9577 2.1902 0.9546
5 1.8356 0.9521 1.8580 0.9522
4 2 11.3436 0.9532 11.8191 0.9535
3 2.7905 0.9555 3.0067 0.9529
4 1.8135 0.9460 1.9197 0.9450
5 1.5562 0.9446 1.6797 0.9462
4.5 2 9.6661 0.9527 9.6663 0.9557
3 2.4182 0.9464 2.4784 0.9458
4 1.7283 0.9457 1.8020 0.9463
5 1.3776 0.9444 1.4251 0.9417
Table 11

Average length (ALs) and coverage probabilities (CPs) of 95% CIs based on T1 and T2.

COMPETING INTERESTS

The authors declare that they have no conflict of interests.

ACKNOWLEDGMENTS

The authors are thankful to the Editor and the reviewers for recommending the paper for publication.

APPENDIX A. DERIVATION OF EQ. (2) WHEN n=m+1.

μm,m+1(r,s)=θ4Γ(m)(θ+1)0xr{log(θ+1+θxθ+1)+θx}m11+xθ+1+θx×xys(1+y)eθydydx=θ3Γ(m)(θ+1)0xr{log(θ+1+θxθ+1)+θx}m11+xθ+1+θx×[xs+1s+1+j=0sΓ(s)[1+s/θ]θsjj!xj]eθxdx=(θ+1)r1eθ+1Γ(m)θr11(u1)r1{logu+(θ+1)(u1)}m1[θ+(θ+1)(u1)]×[[(θ+1)(u1)/θ]s+1s+1+j=0sΓ(s)[1+s/θ]θsj!(θ+1)(u1)]j]e(θ+1)udu=(θ+1)r1eθ+1Γ(m)θr1i=0m1(m1i)(1)i(θ+1)mi1×1(u1)r+m2i{logu}i[θ+(θ+1)(u1)]×([(θ+1)(u1)/θ]s+1s+1+j=0sΓ(s)[1+s/θ]θsj![(θ+1)(u1)]j)e(θ+1)udu=(θ+1)r1eθ+1Γ(m)θs+r1i=0m1(m1i)(1)i(θ+1)mi×{(θ+1)ss+1q=1r+mi+s(r+m1i+sq1)(1)r+m+sh(q,i,θ)+(θ+1)s+1(s+1)θq=1r+mi+s+1(r+mi+sq1)(1)r+m+s+1h(q,i,θ)+j=0s(θ+1)j1Γ(s)[θ+s]j!×q=1r+m1+ji(r+m2+jiq1)(1)r+m1+jh(q,i,θ)+j=0s(θ+1)jΓ(s)[1+s/θ]j!q=1r+m+ji(r+m1+jiq1)(1)r+m+jh(q,i,θ)},
where
hq,i,θ=(1)iqiqi{(θ+1)qq,θ+1}.

REFERENCES

1.R.L. Houchens, Record Value Theory and Inference, Ph.D. thesis, University of California, Riverside, 1984.
2.K.N. Chandler, J. Roy. Stat. Soc. Ser. B., Vol. 14, 1952, pp. 220-228.
3.M. Ahsanullah, Record Statistics, Nova Science Publishers, Commack, New York, 1995.
4.B.C. Arnold, N. Balakrishnan, and H.N. Nagaraja, Records, John Wiley & Sons, New York, 1998.
5.V.B. Nevzorov, Records: Mathematical Theory, American Mathematical Society Providence, Rhode Island, 2001, pp. 194.
6.D.V. Lindley, J. Roy. Stat. Soc. Ser. B., Vol. 20, 1958, pp. 102-107.
7.M.E. Ghitany, B. Atieh, and S. Nadarajah, Math. Comput. Simul., Vol. 78, 2008, pp. 493-506.
8.H. Zakerzadeh and A. Dolati, J. Math. Ext., Vol. 3, 2009, pp. 13-25.
9.M.E. Ghitany, F. Alqallaf, D.K. Al-Mutairi, and H.A. Husain, Math. Comput. Simul., Vol. 81, 2011, pp. 1190-1201.
10.H.S. Bakouch, B.M. Al-Zahrani, A.A. Al-Shomrani, V.A.A. Marchi, and F. Louzada, J. Korean Stat. Soc., Vol. 41, 2012, pp. 75-85.
11.M.E. Ghitany, D.K. Al-Mutairi, N. Balakrishnan, and L.J. Al-Enezi, Comput. Stat. Data Anal., Vol. 64, 2013, pp. 20-33.
12.A. Asgharzadeh, H.S. Bakouch, S. Nadarajah, and F. Sharafi, Braz. J. Probab. Stat., Vol. 30, 2016, pp. 1-27.
13.A. Asgharzadeh, S. Nadarajah, and F. Sharafi, REVSTAT, Vol. 16, 2018, pp. 87-113.
14.A. Asgharzadeh, S. Nadarajah, and F. Sharafi, Commun. Stat. Theory Methods, Vol. 46, No. 10, 2017, pp. 5001-5021.
15.H. Krishna and K. Kumar, Math. Comput. Simulat., Vol. 82, 2011, pp. 281-294.
16.S. Ali, M. Aslam, and S.M.A. Kazmi, Appl. Math. Model., Vol. 37, 2013, pp. 6068-6078.
17.P.K. Gupta and B. Singh, Int. J. Syst. Assur. Eng. Manag., Vol. 4, 2013, pp. 378-385.
18.D.K. Al-Mutairi, M.E. Ghitany, and D. Kundu, Commun. Stat. Theory Methods, Vol. 42, 2013, pp. 1443-1463.
19.A. Asgharzadeh, H. K. T. Ng, R. Valiollahi, and M. Azizpour, J. Stat. Theory Appl., Vol. 16, 2017, pp. 178-197.
20.A. Asgharzadeh, A. Fallah, M.Z. Raqab, and R. Valiollahi, Stat. Papers, Vol. 59, 2018, pp. 759-779.
21.M. Ahsanullah, Ann. Inst. Statist. Math., Vol. 32, 1980, pp. 363-368.
22.I.R. Dunsmore, Ann. Inst. Stat. Math., Vol. 35, 1983, pp. 267-277.
23.N. Balakrishnan, M. Ahsanullah, and P.S. Chan, J. Appl. Stat. Sci., Vol. 2, 1995, pp. 233-248.
24.N. Balakrishnan and P.S. Chan, Stat. Probabil. Lett., Vol. 39, 1998, pp. 73-80.
25.M.Z. Raqab, J. Stat. Plan. Inference, Vol. 104, 2002, pp. 339-350.
26.K.S. Sultan, G.R. AL-Dayian, and H.H. Mohammad, Comput. Stat. Data Anal., Vol. 52, 2008, pp. 1430-1440.
27.S.M.T.K. MirMostafaee, A. Asgharzadeh, and A. Fallah, Metron., Vol. 74, 2016, pp. 37-59.
28.I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, sixth ed., Academic Press, San Diego, 2000.
29.N. Balakrishnan and A.C. Cohen, Order Statistics and Inference: Estimation Methods, Academic Press, San Diego, 1991.
30.N.R. Mann, Ann. Math. Stat., Vol. 40, 1969, pp. 2149-2155.
31.M. Burkschat, Commun. Stat. Theory Methods, Vol. 39, 2010, pp. 311-326.
Journal
Journal of Statistical Theory and Applications
Volume-Issue
17 - 4
Pages
686 - 702
Publication Date
2018/12/31
ISSN (Online)
2214-1766
ISSN (Print)
1538-7887
DOI
10.2991/jsta.2018.17.4.10How to use a DOI?
Copyright
© 2018 The Authors. Published by Atlantis Press SARL.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - A. Fallah
AU  - A. Asgharzadeh
AU  - S.M.T.K. MirMostafaee
PY  - 2018
DA  - 2018/12/31
TI  - On the Lindley Record Values and Associated Inference
JO  - Journal of Statistical Theory and Applications
SP  - 686
EP  - 702
VL  - 17
IS  - 4
SN  - 2214-1766
UR  - https://doi.org/10.2991/jsta.2018.17.4.10
DO  - 10.2991/jsta.2018.17.4.10
ID  - Fallah2018
ER  -