On the Lindley Record Values and Associated Inference
Corresponding author. Email: a.asharzadeh@umz.ac.ir
- DOI
- 10.2991/jsta.2018.17.4.10How to use a DOI?
- Keywords
- Best linear invariant estimators; Best linear unbiased estimators; Lindley distribution; Double moments; Pivotal quantity; Prediction; Record values; Single moments
- Abstract
In this paper, we discuss the record values arising from the Lindley distribution. We compute the means, variances and covariances of the record values. These values are used to compute the best linear unbiased estimators (BLUEs) and the best linear invariant estimators (BLIEs) of the location and scale parameters. By using the BLUEs and BLIEs, we construct confidence intervals for the location and scale parameters through Monte Carlo simulations. Prediction for the future records is also discussed.
- Copyright
- © 2018 The Authors. Published by Atlantis Press SARL.
- Open Access
- This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).
1. INTRODUCTION
Let
Chandler [2] defined the model of record statistics as a model for successive extremes in a sequence of IID random variables. These statistics are of interest and important in many real life applications involving data relating to weather, economics, sport and life testing studies. For more details and applications regarding record values, see Ahsanullah [3], Arnold et al. [4] and Nevzorov [5].
Recently, the Lindley distribution has received a considerable attention in the statistical literature. It was first proposed by Lindley [6] in the context of Bayesian inference. The pdf of the Lindley distribution is given by
A distribution that is close in form to Eq. (2) is the well-known exponential distribution with pdf
Ghitany et al. [7] showed in many ways that the Lindley distribution is a better model than one based on the exponential distribution. The shape of the hazard rate function of the Lindley distribution is an increasing function. This distribution belongs to an exponential family and it can be written as a mixture of an exponential and a gamma distribution with shape parameter 2. In recent years, this distribution has been studied and extended by many authors [7; 8; 9; 10; 11; 12; 13; 14].
Recently, some work has been done on inferential procedures for the Lindley distribution based on complete and censored data [15; 16; 17; 18; 19]. Recently, Asgharzadeh et al. [20] discussed the maximum likelihood and Bayesian estimation of the shape parameter of the Lindley distribution based on upper records. In this article, we consider the upper record values from the Lindley distribution. We compute the means, variances and covariances of the upper record values. Then, we use these moments to calculate best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) for the location and scale parameters of the Lindley distribution. Prediction for the future records is also discussed. Ahsanullah [21] and Dunsmore [22] discussed the BLUEs and prediction of future record values from a two-parameter exponential distribution. Some work in this direction has been done for the logistic distribution by Balakrishnan et al. [23], for the normal distribution by Balakrishnan and Chan [24], for the generalized exponential distribution by Raqab [25], for the gamma distribution by Sultan et al. [26] and for the Nadarajah-Haghighi distribution by MirMostafaee et al. [27].
In this paper, we consider the upper record values from the Lindley distribution. In Section 2, we compute the means, variances and covariances of record values up to sample size 6. Next, in Section 3, we obtain the BLUEs and BLIEs of the location and scale parameters of the Lindley distribution. The BLUEs and BLIEs are then used to construct the confidence intervals (CIs) for the location and scale parameters. In Section 4, we discuss point and interval predictions for future records. In Section 5, two numerical examples are given to illustrate the estimation and prediction methods discussed in this paper. In Section 6, Monte Carlo simulations are performed to compare the proposed CIs of the location and scale parameters and also to compare the prediction intervals (PIs) of the future records.
2. MOMENTS OF THE UPPER RECORD VALUES
Let
Then, the rth single moment of XU(n) denoted by
Note that using the transformation
Let us now consider the double moments of the upper record values
For the Lindley distribution, we obtain
In general, the double moment in Eq. (4) cannot be obtained in a closed form, but for the special case when
Through numerical integration, we can determine the means,
n | θ = 0.5 | θ = 1 | θ = 1.5 | θ = 2 | θ = 2.5 | θ = 3 | θ = 3.5 | θ = 4 | θ = 4.5 |
---|---|---|---|---|---|---|---|---|---|
1 | 3.333 | 1.500 | 0.933 | 0.666 | 0.514 | 0.416 | 0.349 | 0.300 | 0.262 |
2 | 6.069 | 2.819 | 1.785 | 1.289 | 1.002 | 0.816 | 0.686 | 0.591 | 0.518 |
3 | 8.577 | 4.052 | 2.594 | 1.886 | 1.473 | 1.204 | 1.015 | 0.876 | 0.770 |
4 | 10.969 | 5.236 | 3.375 | 2.466 | 1.933 | 1.584 | 1.338 | 1.157 | 1.018 |
5 | 13.288 | 6.389 | 4.138 | 3.034 | 2.384 | 1.957 | 1.657 | 1.434 | 1.263 |
6 | 15.559 | 7.520 | 4.888 | 3.594 | 2.830 | 2.327 | 1.972 | 1.709 | 1.507 |
Means of record statistics.
m | n | θ = 0.5 | θ = 1 | θ = 1.5 | θ = 2 | θ = 2.5 | θ = 3 | θ = 3.5 | θ = 4 | θ = 4.5 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 7.5556 | 1.7500 | 0.7288 | 0.3888 | 0.2383 | 0.1597 | 0.1138 | 0.0850 | 0.0657 |
1 | 2 | 6.8964 | 1.6323 | 0.6904 | 0.3724 | 0.2300 | 0.1550 | 0.1110 | 0.0832 | 0.0645 |
1 | 3 | 6.5612 | 1.5655 | 0.6668 | 0.3616 | 0.2244 | 0.1518 | 0.1090 | 0.0818 | 0.0635 |
1 | 4 | 6.3579 | 1.5227 | 0.6509 | 0.3541 | 0.2203 | 0.1493 | 0.1075 | 0.0808 | 0.0628 |
1 | 5 | 6.2208 | 1.4929 | 0.6395 | 0.3486 | 0.2172 | 0.1475 | 0.1062 | 0.0800 | 0.0628 |
1 | 6 | 6.1216 | 1.4709 | 0.6309 | 0.3444 | 0.2148 | 0.1460 | 0.1053 | 0.0793 | 0.0618 |
2 | 2 | 12.639 | 3.0513 | 1.3096 | 0.7138 | 0.4444 | 0.3012 | 0.2167 | 0.1629 | 0.1266 |
2 | 3 | 12.027 | 2.9267 | 1.2648 | 0.6932 | 0.4334 | 0.2949 | 0.2127 | 0.1603 | 0.1248 |
2 | 4 | 11.656 | 2.8467 | 1.2346 | 0.6788 | 0.4256 | 0.2902 | 0.2097 | 0.1582 | 0.1234 |
2 | 5 | 11.406 | 2.7910 | 1.2130 | 0.6682 | 0.4196 | 0.2865 | 0.2074 | 0.1566 | 0.1223 |
2 | 6 | 11.225 | 2.7500 | 1.1967 | 0.6600 | 0.4150 | 0.2836 | 0.2055 | 0.1553 | 0.1213 |
3 | 3 | 17.192 | 4.2143 | 1.8333 | 1.0102 | 0.6344 | 0.4331 | 0.3133 | 0.2366 | 0.1846 |
3 | 4 | 16.663 | 4.0993 | 1.7896 | 0.9892 | 0.6228 | 0.4261 | 0.3089 | 0.2336 | 0.1825 |
3 | 5 | 16.306 | 4.0193 | 1.7583 | 0.9737 | 0.6142 | 0.4208 | 0.3054 | 0.2312 | 0.1808 |
3 | 6 | 16.047 | 3.9603 | 1.7347 | 0.9619 | 0.6074 | 0.4166 | 0.3026 | 0.2293 | 0.1794 |
4 | 4 | 21.546 | 5.3189 | 2.3300 | 1.2919 | 0.8155 | 0.5592 | 0.4060 | 0.3075 | 0.2406 |
4 | 5 | 21.085 | 5.2152 | 2.2893 | 1.2717 | 0.8037 | 0.5519 | 0.4012 | 0.3042 | 0.2384 |
4 | 6 | 20.752 | 5.1387 | 2.2586 | 1.2562 | 0.7952 | 0.5466 | 0.3978 | 0.3019 | 0.2366 |
5 | 5 | 25.800 | 6.3933 | 2.8120 | 1.5650 | 0.9912 | 0.6816 | 0.4962 | 0.3767 | 0.2952 |
5 | 6 | 25.393 | 6.2996 | 2.7744 | 1.5460 | 0.9803 | 0.6742 | 0.4913 | 0.3733 | 0.2927 |
6 | 6 | 29.994 | 7.4496 | 3.2850 | 1.8327 | 1.1635 | 0.8017 | 0.5846 | 0.4445 | 0.3489 |
Variances and covariances of record statistics.
3. LINEAR ESTIMATORS
Let
Furthermore, the variances of these BLUEs are given by
The coefficients
n | θ = 0.5 | θ = 1 | θ = 1.5 | θ = 2 | θ = 2.5 | θ = 3 | θ = 3.5 | θ = 4 | θ = 4.5 |
---|---|---|---|---|---|---|---|---|---|
2 | 2.2184 | 2.1369 | 2.0949 | 2.0698 | 2.0536 | 2.0428 | 2.0352 | 2.0295 | 2.0245 |
−1.2184 | −1.1369 | −1.0949 | −1.0698 | −1.0536 | −1.0428 | −1.0352 | −1.0295 | −1.0245 | |
3 | 1.6086 | 1.5680 | 1.5472 | 1.5351 | 1.5268 | 1.5207 | 1.5173 | 1.5148 | 1.5133 |
0.0564 | 0.0404 | 0.0310 | 0.0228 | 0.0188 | 0.0168 | 0.0133 | 0.0106 | 0.0074 | |
−0.6650 | −0.6085 | −0.5774 | −0.5580 | −0.5456 | −0.5375 | −0.5307 | −0.5254 | −0.5207 | |
4 | 1.3957 | 1.3721 | 1.3604 | 1.3536 | 1.3487 | 1.3452 | 1.3433 | 1.3421 | 1.3410 |
0.0526 | 0.0367 | 0.0267 | 0.0198 | 0.0165 | 0.0146 | 0.0109 | 0.0077 | 0.0059 | |
0.0223 | 0.0173 | 0.0136 | 0.0113 | 0.0086 | 0.0060 | 0.0070 | 0.0078 | 0.0073 | |
−0.4707 | −0.4262 | −0.4008 | −0.3848 | −0.3739 | −0.3659 | −0.3613 | −0.3577 | −0.3543 | |
5 | 1.2850 | 1.2710 | 1.2646 | 1.2611 | 1.2585 | 1.2563 | 1.2556 | 1.2550 | 1.2532 |
0.0506 | 0.0347 | 0.0250 | 0.0183 | 0.0149 | 0.0128 | 0.0105 | 0.0070 | 0.0030 | |
0.0223 | 0.0171 | 0.0132 | 0.0107 | 0.0090 | 0.0065 | 0.0067 | 0.0074 | 0.0062 | |
0.0108 | 0.0090 | 0.0075 | 0.0064 | 0.0040 | 0.0047 | 0.0009 | 0.0017 | 0.0151 | |
−0.3688 | −0.3320 | −0.3104 | −0.2967 | −0.2865 | −0.2803 | −0.2737 | −0.2712 | −0.2776 |
Coefficients for the BLUEs of
n | θ = 0.5 | θ = 1 | θ = 1.5 | θ = 2 | θ = 2.5 | θ = 3 | θ = 3.5 | θ = 4 | θ = 4.5 |
---|---|---|---|---|---|---|---|---|---|
2 | −0.3655 | −0.7579 | −1.1731 | −1.6048 | −2.0491 | −2.5031 | −2.9647 | −3.4317 | −3.9016 |
0.3655 | 0.7579 | 1.1731 | 1.6048 | 2.0491 | 2.5031 | 2.9647 | 3.4317 | 3.9016 | |
3 | −0.1889 | −0.3881 | −0.5968 | −0.8131 | −1.0352 | −1.2608 | −1.4910 | −1.7236 | −1.9602 |
−0.0036 | −0.0074 | −0.0107 | −0.0131 | −0.0151 | −0.0183 | −0.0187 | −0.0203 | −0.0174 | |
0.1925 | 0.3956 | 0.6076 | 0.8263 | 1.0503 | 1.2791 | 1.5098 | 1.7439 | 1.9776 | |
4 | −0.1292 | −0.2639 | −0.4041 | −0.5486 | −0.6964 | −0.8466 | −1.0002 | −1.1554 | −1.3115 |
−0.0025 | −0.0051 | −0.0072 | −0.0088 | −0.0109 | −0.0132 | −0.0119 | −0.0110 | −0.0119 | |
−0.0002 | −0.0009 | −0.0020 | −0.0032 | −0.0037 | −0.0036 | −0.0071 | −0.0099 | −0.0101 | |
0.1320 | 0.2700 | 0.4134 | 0.5607 | 0.7111 | 0.8636 | 1.0194 | 1.1764 | 1.3335 | |
5 | −0.0989 | −0.2013 | −0.3071 | −0.4159 | −0.5269 | −0.6395 | −0.7540 | −0.8711 | −0.9915 |
−0.0020 | −0.0039 | −0.0055 | −0.0067 | −0.0077 | −0.0089 | −0.0106 | −0.0085 | −0.0012 | |
−0.0002 | −0.0007 | −0.0015 | −0.0023 | −0.0045 | −0.0047 | −0.0063 | −0.0087 | −0.0060 | |
0.0003 | 0.0003 | −0.00004 | −0.0006 | 0.0011 | 0.0001 | 0.0026 | 0.0025 | −0.0137 | |
0.1008 | 0.2057 | 0.3143 | 0.4257 | 0.5381 | 0.6530 | 0.7684 | 0.8858 | 1.0125 |
Coefficients for the BLUEs of
n | θ = 0.5 | θ = 1 | θ = 1.5 | θ = 2 | θ = 2.5 | θ = 3 | θ = 3.5 | θ = 4 | θ = 4.5 |
---|---|---|---|---|---|---|---|---|---|
2 | 18.6661 | 4.0041 | 1.6012 | 0.8333 | 0.5030 | 0.3335 | 0.2358 | 0.1750 | 0.1068 |
0.8553 | 0.8828 | 0.9050 | 0.9215 | 0.9351 | 0.9454 | 0.9536 | 0.9597 | 0.9636 | |
−3.0922 | −1.4135 | −0.8897 | −0.6406 | −0.4978 | −0.4056 | −0.3413 | −0.2941 | −0.2577 | |
2.2462 | 1.1335 | 0.7385 | 0.5434 | 0.4292 | 0.3537 | 0.3005 | 0.2592 | 0.2277 | |
3 | 13.5075 | 2.9438 | 1.1861 | 0.6201 | 0.3750 | 0.2489 | 0.1762 | 0.1310 | 0.1009 |
0.4226 | 0.4347 | 0.4453 | 0.4539 | 0.4607 | 0.4663 | 0.4706 | 0.4748 | 0.4779 | |
−1.5981 | −0.7242 | −0.4529 | −0.3248 | −0.2514 | −0.2042 | −0.1715 | −0.1480 | −0.1298 | |
1.0724 | 0.5430 | 0.3581 | 0.2660 | 0.2109 | 0.1743 | 0.1487 | 0.1297 | 0.1147 | |
4 | 11.7063 | 2.5784 | 1.0444 | 0.5476 | 0.3318 | 0.2206 | 0.1561 | 0.1161 | 0.0895 |
0.2810 | 0.2880 | 0.2946 | 0.3000 | 0.3045 | 0.3083 | 0.3112 | 0.3139 | 0.3161 | |
−1.0929 | −0.4927 | −0.3067 | −0.2192 | −0.1692 | −0.1373 | −0.1150 | −0.0990 | −0.0868 | |
0.6940 | 0.3516 | 0.2323 | 0.1743 | 0.1390 | 0.1156 | 0.0981 | 0.0860 | 0.0801 | |
5 | 10.7697 | 2.3899 | 0.9718 | 0.5107 | 0.3099 | 0.2061 | 0.1461 | 0.1087 | 0.0833 |
0.2110 | 0.2157 | 0.2201 | 0.2240 | 0.2272 | 0.2298 | 0.2323 | 0.2342 | 0.2347 | |
−0.8369 | −0.3759 | −0.2332 | −0.1662 | −0.1281 | −0.1037 | −0.0869 | −0.0746 | −0.0645 | |
0.5101 | 0.2584 | 0.1733 | 0.1290 | 0.1029 | 0.0858 | 0.0737 | 0.0640 | 0.0537 |
Note: For each
Variances and covariances of the BLUEs of
Based on the BLUEs of the location and scale parameters, the CIs for
Constructing such CIs requires then percentage the points of
Similarly, a
R1 | R2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 2 | −0.7440 | −0.7155 | 14.492 | 26.198 | −1.0478 | −1.0213 | 1.9622 | 2.6028 | ||
3 | −0.8658 | −0.8346 | 4.8155 | 7.6618 | −1.3099 | −1.2264 | 1.9176 | 2.4617 | |||
4 | −0.9355 | −0.9016 | 3.9282 | 5.5012 | −1.4486 | −1.3088 | 1.8902 | 2.3525 | |||
5 | −0.9773 | −0.9332 | 3.2299 | 4.5157 | −1.5113 | −1.3567 | 1.8260 | 2.3621 | |||
1 | 2 | −0.7280 | −0.7038 | 13.305 | 30.067 | −1.0378 | −1.0041 | 1.9768 | 2.5454 | ||
3 | −0.8464 | −0.8227 | 5.2436 | 7.8190 | −1.3088 | −1.2210 | 1.8889 | 2.4898 | |||
4 | −0.9030 | −0.8733 | 3.6417 | 5.4939 | −1.4414 | −1.2896 | 1.8967 | 2.3361 | |||
5 | −0.9404 | −0.9018 | 3.1786 | 4.7170 | −1.5085 | −1.3516 | 1.8264 | 2.2896 | |||
1.5 | 2 | −0.7174 | −0.6948 | 13.769 | 25.300 | −1.0205 | −0.9960 | 1.9763 | 2.6424 | ||
3 | −0.8291 | −0.8042 | 4.6772 | 7.4613 | −1.2891 | −1.2059 | 1.9158 | 2.4790 | |||
4 | −0.8848 | −0.8631 | 3.8001 | 5.5215 | −1.4325 | −1.3015 | 1.8816 | 2.3670 | |||
5 | −0.9198 | −0.8902 | 3.1424 | 4.5661 | −1.4954 | −1.3501 | 1.8362 | 2.3643 | |||
2 | 2 | −0.7110 | −0.6905 | 12.911 | 29.571 | −1.0165 | −0.9825 | 1.9599 | 2.5509 | ||
3 | −0.8249 | −0.8003 | 4.8515 | 7.8426 | −1.2871 | −1.1963 | 1.9217 | 2.4887 | |||
4 | −0.8781 | −0.8474 | 3.8368 | 5.4495 | −1.4125 | −1.3013 | 1.8700 | 2.4487 | |||
5 | −0.9055 | −0.8821 | 3.3815 | 4.5120 | −1.4831 | −1.3580 | 1.8812 | 2.2959 | |||
2.5 | 2 | −0.7061 | −0.6846 | 13.532 | 24.754 | −1.0049 | −0.9816 | 1.9843 | 2.6678 | ||
3 | −0.8142 | −0.7911 | 4.6038 | 7.3439 | −1.2746 | −1.1912 | 1.9176 | 2.4850 | |||
4 | −0.8689 | −0.8476 | 3.7523 | 5.3652 | −1.4201 | −1.2933 | 1.8914 | 2.3739 | |||
5 | −0.8992 | −0.8737 | 3.0930 | 4.5540 | −1.4836 | −1.3446 | 1.8430 | 2.3753 | |||
3 | 2 | −0.7042 | −0.6832 | 12.743 | 26.604 | −1.0038 | −0.9713 | 1.9557 | 2.5370 | ||
3 | −0.8134 | −0.7910 | 4.7970 | 7.5683 | −1.2730 | −1.1860 | 1.9253 | 2.4916 | |||
4 | −0.8659 | −0.8354 | 3.7999 | 5.4028 | −1.4223 | −1.2896 | 1.8683 | 2.4701 | |||
5 | −0.8927 | −0.8694 | 3.3642 | 4.5019 | −1.4798 | −1.3543 | 1.8802 | 2.3110 | |||
3.5 | 2 | −0.7006 | −0.6797 | 11.786 | 24.528 | −0.9955 | −0.9666 | 2.0320 | 2.6852 | ||
3 | −0.8074 | −0.7856 | 4.6534 | 7.2653 | −1.2652 | −1.1790 | 1.9438 | 2.4921 | |||
4 | −0.8627 | −0.8371 | 3.7762 | 5.2676 | −1.4081 | −1.2911 | 1.9073 | 2.3811 | |||
5 | −0.8905 | −0.8639 | 3.1165 | 4.5332 | −1.4773 | −1.3310 | 1.8715 | 2.3824 | |||
4 | 2 | −0.6986 | −0.6781 | 13.615 | 28.989 | −0.9966 | −0.9713 | 1.9175 | 2.5425 | ||
3 | −0.8077 | −0.7839 | 5.1292 | 7.5166 | −1.2635 | −1.1831 | 1.9524 | 2.4930 | |||
4 | −0.8590 | −0.8376 | 3.5764 | 5.3673 | −1.3959 | −1.2822 | 1.9260 | 2.4645 | |||
5 | −0.8863 | −0.8140 | 1.9541 | 4.4724 | −1.4698 | −1.3271 | 1.8644 | 2.3214 | |||
4.5 | 2 | −0.6974 | −0.6768 | 11.708 | 24.395 | −0.9905 | −0.9620 | 2.0339 | 2.6996 | ||
3 | −0.8029 | −0.7804 | 4.6256 | 7.2221 | −1.2576 | −1.1724 | 1.9455 | 2.4970 | |||
4 | −0.8561 | −0.8314 | 3.7530 | 5.3086 | −1.3999 | −1.2862 | 1.9036 | 2.3828 | |||
5 | −0.8866 | −0.8609 | 3.1101 | 4.5284 | −1.4740 | −1.3323 | 1.8860 | 2.3939 |
Simulated percentage points of
Now, let us consider the BLIEs of
Furthermore the variances of these BLIEs are given by (see Arnold et al. [4], p. 143)
Based on the BLIEs, we can again construct CIs for the location and scale parameters through pivotal quantities given by
Table 7 presents the percentage points of
R3 | R4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 2 | −0.7192 | −0.6654 | 28.847 | 62.296 | −1.9750 | −1.9440 | 1.0862 | 1.7186 | ||
3 | −0.8521 | −0.8038 | 8.1365 | 12.851 | −1.9613 | −1.8648 | 1.3133 | 1.8644 | |||
4 | −0.9076 | −0.8575 | 5.3955 | 8.0337 | −1.9595 | −1.8304 | 1.3756 | 1.8680 | |||
5 | −0.9494 | −0.8981 | 4.1167 | 5.8680 | −1.9598 | −1.8096 | 1.4121 | 1.8921 | |||
1 | 2 | −0.7166 | −0.6676 | 29.839 | 61.833 | −1.9773 | −1.9486 | 0.9652 | 1.6058 | ||
3 | −0.8298 | −0.7854 | 8.4338 | 12.824 | −1.9744 | −1.8783 | 1.2793 | 1.7441 | |||
4 | −0.8847 | −0.8414 | 5.33826 | 7.7013 | −1.9625 | −1.8453 | 1.3580 | 1.8268 | |||
5 | −0.9195 | −0.8769 | 4.25628 | 6.0973 | −1.9563 | −1.8040 | 1.3949 | 1.8661 | |||
1.5 | 2 | −0.7145 | −0.6753 | 27.652 | 55.661 | −1.9727 | −1.9445 | 1.0212 | 1.6648 | ||
3 | −0.8232 | −0.7870 | 8.0750 | 12.324 | −1.9601 | −1.8716 | 1.2314 | 1.7524 | |||
4 | −0.8707 | −0.8317 | 5.1743 | 7.9021 | −1.9593 | −1.8315 | 1.3280 | 1.8161 | |||
5 | −0.9036 | −0.8643 | 4.2503 | 5.9628 | −1.9602 | −1.7976 | 1.4296 | 1.9293 | |||
2 | 2 | −0.7137 | −0.6689 | 29.571 | 61.791 | −1.9764 | −1.9493 | 0.9459 | 1.5909 | ||
3 | −0.8188 | −0.7820 | 7.8548 | 12.669 | −1.9664 | −1.8770 | 1.2148 | 1.7904 | |||
4 | −0.8659 | −0.8324 | 5.2732 | 7.5969 | −1.9651 | −1.8405 | 1.3254 | 1.8318 | |||
5 | −0.8971 | −0.8627 | 4.1960 | 5.8944 | −1.9663 | −1.8263 | 1.4045 | 1.8859 | |||
2.5 | 2 | −0.7103 | −0.6684 | 28.695 | 56.244 | −1.9737 | −1.9464 | 1.0746 | 1.6639 | ||
3 | −0.8173 | −0.7803 | 7.5279 | 12.031 | −1.9717 | −1.8797 | 1.2505 | 1.7248 | |||
4 | −0.8637 | −0.8334 | 5.2897 | 7.9068 | −1.9700 | −1.8504 | 1.2999 | 1.7596 | |||
5 | −0.8874 | −0.8573 | 4.2208 | 5.9416 | −1.9688 | −1.8205 | 1.3881 | 1.8779 | |||
3 | 2 | −0.7095 | −0.6700 | 27.772 | 59.816 | −1.9730 | −1.9452 | 0.9777 | 1.6110 | ||
3 | −0.8156 | −0.7806 | 7.8232 | 12.635 | −1.9624 | −1.8745 | 1.2103 | 1.7864 | |||
4 | −0.8567 | −0.8272 | 5.2928 | 7.7807 | −1.9664 | −1.8263 | 1.3073 | 1.8655 | |||
5 | −0.8878 | −0.8573 | 4.0903 | 5.9822 | −1.9646 | −1.8219 | 1.3738 | 1.9174 | |||
3.5 | 2 | −0.7119 | −0.6713 | 28.026 | 59.938 | −1.9737 | −1.9483 | 1.0317 | 1.7035 | ||
3 | −0.8122 | −0.7744 | 7.7792 | 12.530 | −1.9656 | −1.8776 | 1.2310 | 1.8115 | |||
4 | −0.8607 | −0.8278 | 5.2559 | 7.8655 | −1.9572 | −1.8424 | 1.3075 | 1.8556 | |||
5 | −0.8879 | −0.8564 | 4.1511 | 5.9445 | −1.9560 | −1.8153 | 1.4402 | 1.9335 | |||
4 | 2 | −0.7135 | −0.6704 | 29.338 | 61.613 | −1.9763 | −1.9510 | 0.9379 | 1.5628 | ||
3 | −0.8109 | −0.7820 | 7.9785 | 12.891 | −1.9664 | −1.8858 | 1.2750 | 1.8004 | |||
4 | −0.8568 | −0.8233 | 5.2535 | 7.6812 | −1.9626 | −1.8359 | 1.3215 | 1.8401 | |||
5 | −0.8831 | −0.8545 | 4.2507 | 5.9219 | −1.9621 | −1.8221 | 1.4286 | 1.9605 | |||
4.5 | 2 | −0.7128 | −0.6725 | 28.003 | 59.957 | −1.9737 | −1.9488 | 1.0271 | 1.6993 | ||
3 | −0.8113 | −0.7753 | 8.1742 | 12.527 | −1.9622 | −1.8771 | 1.2054 | 1.7388 | |||
4 | −0.8588 | −0.8283 | 5.0210 | 7.5207 | −1.9526 | −1.8453 | 1.3567 | 1.8113 | |||
5 | −0.8854 | −0.8554 | 4.0604 | 5.9901 | −1.9475 | −1.8141 | 1.3953 | 1.9071 |
Simulated percentage points of
Similarly, we can determine a
Now, let us compare the BLUEs and BLIEs using the relative efficiency criterion (REC). Since the mean squared errors (MSEs) of BLUEs are equal to their corresponding variances, we have
On the other hand, the MSEs of BLIEs of
Therefore, we can readily obtain the RECs of the BLIEs of
Therefore, both of the BLIEs of
4. LINEAR PREDICTORS
Suppose we have observed the first
Let us now consider the best linear invariant predictor (BLIP) of the next upper record value. From the results of Mann [30], the BLIP of
In Table 5, we reported the values of
The MSPE of
Now we compare the BLUP and BLIP of
In Table 8, we presented the REC of
n | θ = 0.5 | θ = 1 | θ = 1.5 | θ = 2 | θ = 2.5 | θ = 3 | θ = 3.5 | θ = 4 | θ = 4.5 |
---|---|---|---|---|---|---|---|---|---|
2 | 1.3041 | 1.3126 | 1.2850 | 1.2667 | 1.2565 | 1.2503 | 1.2454 | 1.2363 | 1.2296 |
3 | 1.1105 | 1.1138 | 1.1026 | 1.0948 | 1.0892 | 1.0846 | 1.0840 | 1.0826 | 1.0813 |
4 | 1.0578 | 1.0594 | 1.0538 | 1.0490 | 1.0455 | 1.0440 | 1.0398 | 1.0408 | 1.0643 |
5 | 1.0357 | 1.0367 | 1.0328 | 1.0301 | 1.0278 | 1.0259 | 1.0259 | 1.0232 | 1.0048 |
The REC of
Suppose we are now interested in PIs for
Constructing such PIs requires the percentage points of
T1 | T2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | 2.5% | 5% | 95% | 97.5% | 2.5% | 5% | 95% | 97.5% | |||
0.5 | 2 | 0.0712 | 0.1413 | 39.647 | 76.692 | 0.1322 | 0.2622 | 73.555 | 142.290 | ||
3 | 0.0601 | 0.1207 | 14.392 | 20.527 | 0.0768 | 0.1837 | 22.327 | 32.855 | |||
4 | 0.0614 | 0.1257 | 10.878 | 15.6182 | 0.0782 | 0.1568 | 14.165 | 20.079 | |||
5 | 0.0516 | 0.1104 | 9.6559 | 12.550 | 0.0705 | 0.1456 | 11.467 | 15.348 | |||
1 | 2 | 0.0339 | 0.0681 | 20.278 | 42.555 | 0.0609 | 0.1228 | 40.294 | 88.631 | ||
3 | 0.0334 | 0.0660 | 7.1150 | 10.249 | 0.0399 | 0.0851 | 10.712 | 16.057 | |||
4 | 0.0312 | 0.0626 | 5.4481 | 7.5059 | 0.0384 | 0.0780 | 7.2854 | 10.282 | |||
5 | 0.0280 | 0.0555 | 4.7133 | 6.2944 | 0.0356 | 0.0740 | 5.7481 | 7.7365 | |||
1.5 | 2 | 0.0225 | 0.0451 | 13.594 | 26.469 | 0.0435 | 0.0874 | 25.909 | 54.927 | ||
3 | 0.0206 | 0.0452 | 4.9984 | 7.7554 | 0.0332 | 0.0633 | 7.2247 | 11.462 | |||
4 | 0.0205 | 0.0412 | 3.6181 | 5.0762 | 0.0281 | 0.0555 | 4.8975 | 6.6060 | |||
5 | 0.0190 | 0.0389 | 3.1497 | 4.2039 | 0.0236 | 0.0481 | 3.9040 | 5.2271 | |||
2 | 2 | 0.0154 | 0.0328 | 10.581 | 21.302 | 0.0264 | 0.0594 | 21.275 | 43.214 | ||
3 | 0.0145 | 0.0310 | 3.8087 | 3.8087 | 0.0229 | 0.0458 | 5.4379 | 8.4731 | |||
4 | 0.0147 | 0.0304 | 2.6935 | 3.6855 | 0.0208 | 0.0415 | 3.5587 | 5.0637 | |||
5 | 0.0144 | 0.0297 | 2.3256 | 3.1242 | 0.0202 | 0.0376 | 2.9245 | 3.9670 | |||
2.5 | 2 | 0.0129 | 0.0258 | 8.0905 | 16.145 | 0.0264 | 0.0515 | 16.379 | 34.770 | ||
3 | 0.0110 | 0.0235 | 2.9614 | 4.6853 | 0.0183 | 0.0359 | 4.3968 | 7.0489 | |||
4 | 0.0116 | 0.0224 | 2.2877 | 3.0986 | 0.0155 | 0.0311 | 2.9313 | 4.0433 | |||
5 | 0.0115 | 0.0223 | 1.9293 | 2.5587 | 0.0141 | 0.0278 | 2.3385 | 3.2454 | |||
3 | 2 | 0.0107 | 0.0208 | 6.7242 | 14.437 | 0.0188 | 0.0393 | 13.919 | 30.501 | ||
3 | 0.0105 | 0.0208 | 2.3687 | 3.5040 | 0.0129 | 0.0280 | 3.8110 | 5.7746 | |||
4 | 0.0096 | 0.0193 | 1.9203 | 2.7296 | 0.0112 | 0.0245 | 2.4994 | 3.5728 | |||
5 | 0.0091 | 0.0184 | 1.6067 | 2.1887 | 0.0111 | 0.0223 | 1.9888 | 2.7872 | |||
3.5 | 2 | 0.0089 | 0.0184 | 5.7860 | 12.1082 | 0.0185 | 0.0359 | 11.736 | 24.746 | ||
3 | 0.0082 | 0.0179 | 2.1454 | 3.3560 | 0.0132 | 0.0271 | 3.2235 | 5.1909 | |||
4 | 0.0081 | 0.0175 | 1.5263 | 2.1420 | 0.0114 | 0.0226 | 2.0896 | 2.8773 | |||
5 | 0.0079 | 0.0164 | 1.3732 | 1.8560 | 0.0108 | 0.0207 | 1.6497 | 2.3159 | |||
4 | 2 | 0.0078 | 0.0154 | 5.4120 | 11.3077 | 0.0137 | 0.0288 | 10.4154 | 23.0863 | ||
3 | 0.0074 | 0.0151 | 1.9758 | 2.7955 | 0.0102 | 0.0217 | 2.8633 | 4.4407 | |||
4 | 0.0071 | 0.0140 | 1.3406 | 1.8174 | 0.0090 | 0.0190 | 1.8185 | 2.5268 | |||
5 | 0.0070 | 0.0144 | 1.1706 | 1.5569 | 0.0079 | 0.0171 | 1.4869 | 2.0726 | |||
4.5 | 2 | 0.0071 | 0.0139 | 4.6528 | 9.6756 | 0.0141 | 0.0274 | 9.1362 | 18.999 | ||
3 | 0.0058 | 0.0122 | 1.6271 | 2.4055 | 0.0093 | 0.0191 | 2.4354 | 3.6441 | |||
4 | 0.0069 | 0.0137 | 1.2583 | 1.7334 | 0.0083 | 0.0168 | 1.6336 | 2.3774 | |||
5 | 0.0067 | 0.0128 | 1.0487 | 1.3822 | 0.0077 | 0.0157 | 1.3140 | 1.7646 |
Simulated percentage points of
Similarly, using the pivotal quantity
5. ILLUSTRATIVE EXAMPLES
In this section, we present two numerical examples for illustrative purposes.
5.1 Example 1 (Real Data)
Here, we consider the total annual rainfall (in inches) during March recorded at Los Angeles Civic Center from 1972 to 2006 (see the website of Los Angeles Almanac: www.laalmanac.com/weather/we08aa.htm). From these data, we observe the upper record values as follows:
A simple plot of these five upper record values against the expected values in Table 1 for
The BLIEs of the location and scale parameters are given by
From Eqs. (6) and (8) and use of Tables 6 and 7, the 95% CIs for
Suppose that we want to find the BLUP of the next record
5.2 Example 2 (Simulated Data)
For given values of
The BLUEs of
The BLIEs and the corresponding variances are
The 95% CIs for
Let us now consider the BLUP and BLIP of the next record,
6. SIMULATION
In this section, we carry out an intensive Monte Carlo simulation to compare different CIs presented in Section 3. In this simulation, we have randomly generated 10 000 upper record sample
μ | σ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AL | CP | AL | CP | AL | CP | AL | CP | |||||
0.5 | 2 | 116.968 | 0.9541 | 133.501 | 0.9490 | 32.1525 | 0.9533 | 63.0546 | 0.9454 | |||
3 | 31.4461 | 0.9515 | 33.4645 | 0.9499 | 6.3723 | 0.9527 | 9.1189 | 0.9490 | ||||
4 | 22.1436 | 0.9526 | 23.0607 | 0.9500 | 3.8845 | 0.9541 | 4.7927 | 0.9507 | ||||
5 | 17.9984 | 0.9533 | 18.1236 | 0.9501 | 2.7875 | 0.9566 | 3.3262 | 0.9468 | ||||
1 | 2 | 60.5284 | 0.9596 | 61.3064 | 0.9498 | 39.1433 | 0.9532 | 74.4361 | 0.9436 | |||
3 | 14.7719 | 0.9469 | 15.4661 | 0.9499 | 6.8716 | 0.9515 | 10.1473 | 0.9521 | ||||
4 | 10.2411 | 0.9481 | 10.4097 | 0.9499 | 3.9601 | 0.9481 | 4.9239 | 0.9544 | ||||
5 | 8.7077 | 0.9509 | 8.8175 | 0.9510 | 2.8429 | 0.9485 | 3.4934 | 0.9450 | ||||
1.5 | 2 | 33.2921 | 0.9498 | 34.8740 | 0.9514 | 34.3637 | 0.9477 | 66.8064 | 0.9550 | |||
3 | 9.0784 | 0.9544 | 9.4398 | 0.9481 | 6.7328 | 0.9488 | 9.9251 | 0.9479 | ||||
4 | 6.5841 | 0.9496 | 6.8003 | 0.9492 | 4.0801 | 0.9505 | 5.0701 | 0.9515 | ||||
5 | 5.4468 | 0.9511 | 5.4691 | 0.9500 | 2.8973 | 0.9502 | 3.5035 | 0.9457 | ||||
2 | 2 | 27.1318 | 0.9499 | 27.8236 | 0.9511 | 40.2612 | 0.9501 | 79.1642 | 0.9483 | |||
3 | 6.8626 | 0.9499 | 7.0130 | 0.9512 | 7.1925 | 0.9503 | 10.7277 | 0.9519 | ||||
4 | 4.6924 | 0.9498 | 4.7060 | 0.9472 | 3.9994 | 0.9501 | 5.2650 | 0.9438 | ||||
5 | 3.8978 | 0.9500 | 3.9028 | 0.9503 | 2.8952 | 0.9500 | 3.6018 | 0.9537 | ||||
2.5 | 2 | 18.2254 | 0.9498 | 19.3539 | 0.9482 | 35.4389 | 0.9501 | 72.0573 | 0.9504 | |||
3 | 5.0056 | 0.9500 | 5.1745 | 0.9492 | 7.0564 | 0.9500 | 11.4473 | 0.9518 | ||||
4 | 3.6115 | 0.9499 | 3.8093 | 0.9540 | 4.2128 | 0.9502 | 5.4784 | 0.9550 | ||||
5 | 3.0177 | 0.9481 | 3.0396 | 0.9500 | 2.9284 | 0.9498 | 3.6385 | 0.9458 | ||||
3 | 2 | 15.8027 | 0.9499 | 16.1069 | 0.9489 | 40.6387 | 0.9501 | 74.1516 | 0.9499 | |||
3 | 4.1521 | 0.9484 | 4.2726 | 0.9488 | 7.2285 | 0.9503 | 11.1147 | 0.9467 | ||||
4 | 2.9453 | 0.9510 | 2.9559 | 0.9476 | 4.3355 | 0.9533 | 5.4733 | 0.9553 | ||||
5 | 2.4669 | 0.9458 | 2.4707 | 0.9482 | 2.9882 | 0.9454 | 3.6971 | 0.9566 | ||||
3.5 | 2 | 12.3725 | 0.9499 | 14.1363 | 0.9500 | 35.9585 | 0.9501 | 72.8842 | 0.9510 | |||
3 | 3.3948 | 0.9499 | 3.6863 | 0.9470 | 7.2159 | 0.9500 | 11.6175 | 0.9536 | ||||
4 | 2.4362 | 0.9502 | 2.5758 | 0.9534 | 4.2576 | 0.9500 | 5.3757 | 0.9537 | ||||
5 | 2.0773 | 0.9499 | 2.0885 | 0.9514 | 3.0120 | 0.9501 | 3.6965 | 0.9555 | ||||
4 | 2 | 12.1945 | 0.9500 | 12.5072 | 0.9506 | 41.1703 | 0.9496 | 72.9495 | 0.9451 | |||
3 | 3.0108 | 0.9498 | 3.2115 | 0.9479 | 7.3866 | 0.9501 | 11.6581 | 0.9485 | ||||
4 | 2.1256 | 0.9498 | 2.1618 | 0.9509 | 4.1769 | 0.9501 | 5.5760 | 0.9502 | ||||
5 | 1.7783 | 0.9499 | 1.7858 | 0.9502 | 3.0125 | 0.9501 | 3.7677 | 0.9483 | ||||
4.5 | 2 | 9.2964 | 0.9499 | 10.6092 | 0.9504 | 36.1874 | 0.9500 | 74.7037 | 0.9490 | |||
3 | 2.5535 | 0.9499 | 2.7794 | 0.9493 | 7.3018 | 0.9500 | 11.6565 | 0.9506 | ||||
4 | 1.8548 | 0.9500 | 1.8588 | 0.9492 | 4.2612 | 0.9501 | 5.4964 | 0.9504 | ||||
5 | 1.5655 | 0.9500 | 1.5823 | 0.9509 | 3.0399 | 0.9502 | 3.6726 | 0.9527 |
Average length (ALs) and coverage probabilities (CPs) of 95% CIs based on R1, R2, R3 and R4.
From Table 10, it is observed that the average lengths of CIs for
We also computed the 95% PIs for
θ | n | T1 | T2 | ||
---|---|---|---|---|---|
AL | CP | AL | CP | ||
0.5 | 2 | 77.144 | 0.9543 | 77.145 | 0.9522 |
3 | 20.512 | 0.9419 | 23.092 | 0.9449 | |
4 | 15.647 | 0.9431 | 15.699 | 0.9435 | |
5 | 12.397 | 0.9467 | 12.513 | 0.9463 | |
1 | 2 | 42.748 | 0.9471 | 47.2928 | 0.9455 |
3 | 10.248 | 0.9532 | 11.199 | 0.9534 | |
4 | 7.5315 | 0.9449 | 7.9066 | 0.9449 | |
5 | 6.2920 | 0.9485 | 6.3604 | 0.9467 | |
1.5 | 2 | 26.548 | 0.9574 | 28.921 | 0.9466 |
3 | 7.7232 | 0.9535 | 7.8957 | 0.9440 | |
4 | 5.0579 | 0.9579 | 5.0833 | 0.9560 | |
5 | 4.1784 | 0.9553 | 4.2582 | 0.9491 | |
2 | 2 | 21.192 | 0.9483 | 22.376 | 0.9442 |
3 | 3.7841 | 0.9437 | 5.7966 | 0.9441 | |
4 | 3.6817 | 0.9473 | 3.8702 | 0.9423 | |
5 | 3.096 | 0.9455 | 3.2107 | 0.9477 | |
2.5 | 2 | 16.0882 | 0.9425 | 17.9052 | 0.9466 |
3 | 4.7601 | 0.9433 | 4.8020 | 0.9456 | |
4 | 3.0764 | 0.9465 | 3.0770 | 0.9467 | |
5 | 2.5529 | 0.9480 | 2.6390 | 0.9480 | |
3 | 2 | 14.512 | 0.9570 | 15.762 | 0.9554 |
3 | 3.4745 | 0.9564 | 3.6993 | 0.9578 | |
4 | 2.7251 | 0.9522 | 2.7274 | 0.9509 | |
5 | 2.1801 | 0.9485 | 2.2579 | 0.9482 | |
3.5 | 2 | 12.1655 | 0.9426 | 12.7269 | 0.9464 |
3 | 3.3610 | 0.9458 | 3.5346 | 0.9484 | |
4 | 2.1383 | 0.9577 | 2.1902 | 0.9546 | |
5 | 1.8356 | 0.9521 | 1.8580 | 0.9522 | |
4 | 2 | 11.3436 | 0.9532 | 11.8191 | 0.9535 |
3 | 2.7905 | 0.9555 | 3.0067 | 0.9529 | |
4 | 1.8135 | 0.9460 | 1.9197 | 0.9450 | |
5 | 1.5562 | 0.9446 | 1.6797 | 0.9462 | |
4.5 | 2 | 9.6661 | 0.9527 | 9.6663 | 0.9557 |
3 | 2.4182 | 0.9464 | 2.4784 | 0.9458 | |
4 | 1.7283 | 0.9457 | 1.8020 | 0.9463 | |
5 | 1.3776 | 0.9444 | 1.4251 | 0.9417 |
Average length (ALs) and coverage probabilities (CPs) of 95% CIs based on T1 and T2.
COMPETING INTERESTS
The authors declare that they have no conflict of interests.
ACKNOWLEDGMENTS
The authors are thankful to the Editor and the reviewers for recommending the paper for publication.
APPENDIX A. DERIVATION OF EQ. (2) WHEN n = m + 1 .
REFERENCES
Cite this article
TY - JOUR AU - A. Fallah AU - A. Asgharzadeh AU - S.M.T.K. MirMostafaee PY - 2018 DA - 2018/12/31 TI - On the Lindley Record Values and Associated Inference JO - Journal of Statistical Theory and Applications SP - 686 EP - 702 VL - 17 IS - 4 SN - 2214-1766 UR - https://doi.org/10.2991/jsta.2018.17.4.10 DO - 10.2991/jsta.2018.17.4.10 ID - Fallah2018 ER -