Journal of Nonlinear Mathematical Physics

Volume 15, Issue supplement 3, October 2008, Pages 124 - 136

Approximation of Solitons in the Discrete NLS Equation

Authors
Jesus Cuevas, Guillaume James, Panayotis G. Kevrekidis, Boris A. Malomed, Bernardo Sanchez-Rey
Corresponding Author
Jesus Cuevas
Available Online 1 October 2008.
DOI
https://doi.org/10.2991/jnmp.2008.15.s3.13How to use a DOI?
Abstract
We study four different approximations for finding the profile of discrete solitons in the one- dimensional Discrete Nonlinear Schrödinger (DNLS) Equation. Three of them are discrete approximations (namely, a variational approach, an approximation to homoclinic orbits and a Green-function approach), and the other one is a quasi-continuum approximation. All the results are compared with numerical computations.
Open Access
This is an open access article distributed under the CC BY-NC license.

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
15 - supplement 3
Pages
124 - 136
Publication Date
2008/10
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
https://doi.org/10.2991/jnmp.2008.15.s3.13How to use a DOI?
Open Access
This is an open access article distributed under the CC BY-NC license.

Cite this article

TY  - JOUR
AU  - Jesus Cuevas
AU  - Guillaume James
AU  - Panayotis G. Kevrekidis
AU  - Boris A. Malomed
AU  - Bernardo Sanchez-Rey
PY  - 2008
DA  - 2008/10
TI  - Approximation of Solitons in the Discrete NLS Equation
JO  - Journal of Nonlinear Mathematical Physics
SP  - 124
EP  - 136
VL  - 15
IS  - supplement 3
SN  - 1776-0852
UR  - https://doi.org/10.2991/jnmp.2008.15.s3.13
DO  - https://doi.org/10.2991/jnmp.2008.15.s3.13
ID  - Cuevas2008
ER  -