2. STATISTICAL de RHAM HODGE OPERATORS AND THEIR LICHNEROWICZ FORMULAS
In this section, we prepare some basic notions about statistical de Rham Hodge operators. For details of the geometry of statistical manifolds, see [10].
Let M be a n-dimensional (n ≥ 3) Riemannian manifold with a positive definite Riemannian metric g, and ∇^ be a connection. We assume that M is oriented. Let ∇L be the Levi-Civita connection for g and VolM be the volume form determined by g.
For all X, Y, Z ∈ TxM, x ∈ M, if ∇^ is satisfying the following Codazzi condition:
(∇^Xg)(Y,Z)=(∇^Yg)(X,Z),
(2.1)
we call a structure (
g,
∇^) is a statistical structure, and a connection
∇^ is a statistical connection for
g. Moreover, we define a statistical manifold with statistical structure by (
M,
g,
∇^).
We suppose that (M, g, ∇^) is statistical manifold. Let K be tensor field, where K: Γ(TM) × Γ(TM) → Γ(TM) and Γ(TM) denotes the algebra of smooth vector fields on M. Let K be the difference tensor between ∇^ and ∇L, that is
∇^XY=∇XLY+KXY.
(2.2)
Let K(X, Y) stand for KXY. The de Rham derivative d is a differential operator on C∞(M; ∧*T*M). Then we have the de Rham coderivative δ = d* and the symmetric operator D = d + δ. The standard Hodge Laplacian is defined by
Δ=δd+dδ.
(2.3)
For a statistical manifold (M, g, ∇^), we will investigate a (Lichnerowicz) Laplacian relative to the connection ∇^. If f is a function, then we set
Δ∇^f=-div∇^gradf.
(2.4)
We now extend the definition (2.4) and set E = traceg K(·,·). For any differential form ν, we set
Δ∇^ν=(δ-l(E))dν+d(δ-l(E))ν,
(2.5)
where
l(
E) is the contraction operator.
By the above definition and Lemma 6.4 in [10], we have
Δ∇^=(δ-l(E)+d)2.
(2.6)
For v ∈ Γ(TM), we define the generalized statistical de Rham Hodge operators by
Di=d+δ+λil(v), (i=1,2);Di*=d+δ+λiɛ(v*), (i=1,2),
(2.7)
where
λi is a real number and
v* =
g(
v, ·).
In the local coordinates {xi; 1 ≤ i ≤ n} and the fixed orthonormal frame {e1, ···, en}, the connection matrix (ωs,t) is defined by
∇L(e1,⋯,en)=(e1,⋯,en)(ωs,t).
(2.8)
Let ε(ej*), l(ej) be the exterior and interior multiplications respectively and c(ej) be the Clifford action. Write
c(ej)=ɛ(ej*)-l(ej), c¯(ej)=ɛ(ej*)+l(ej).
(2.9)
Moreover, we assume that ∂i is a natural local frame on TM and (gij)1≤i,j≤n is the inverse matrix associated with the metric matrix (gij)1≤i,j≤n on M. The statistical de Rham Hodge operators Di and Di*(i=1,2) are defined by
Di=d+δ+λil(v)=∑i=1nc(ei)[ei+14∑s,tωs,t(ei)[c¯(es)c¯(et)-c(es)c(et)]]+λil(v);
(2.10)
Di*=d+δ+λiɛ(v*)=∑i=1nc(ei)[ei+14∑s,tωs,t(ei)[c¯(es)c¯(et)-c(es)c(et)]]+λiɛ(v*).
(2.11)
Let gij = g(dxi, dxj), ξ = ∑j ξjdxj and ∇∂iL∂j=∑kΓijk∂k, we denote that
σi=-14∑s,tωs,t(ei)c(es)c(et); ai=14∑s,tωs,t(ei)c¯(es)c¯(et);ξj=gijξi; Γk=gijΓijk; σj=gijσi; aj=gijai.
(2.12)
Then the statistical de Rham Hodge operators Di and Di* can be written as
Di=∑i=1nc(ei)[ei+ai+σi]+λil(v), (i=1,2);
(2.13)
Di*=∑i=1nc(ei)[ei+ai+σi]+λiɛ(v*), (i=1,2).
(2.14)
On the other hand, we recall some basic facts and formulas about Boutet de Monvel’s calculus and the definition of the noncommutative residue for manifolds with boundary (for details see Section 2 in [15]).
Let U ⊂ M be a collar neighborhood of ∂M which is diffeomorphic with ∂M × [0, 1). f ∈ C∞([0, 1)) means that there is f˜∈C∞((-ɛ,1)) such that f˜|[0,1)=f for a small positive number ε. Let h(xn) ∈ C∞([0, 1)) and h(xn) > 0. By the definition of h(xn) ∈ C∞([0, 1)) and h(xn) > 0, there exists h˜∈C∞((-ɛ,1)) such that h˜|[0,1)=h and h˜>0 for some sufficiently small ɛ > 0. Then there exists a metric g^ on M^=M∪∂M∂M×(-ɛ,0] which has the form on U ∪∂M ∂M × (−ε, 0]
g^=1h˜(xn)g∂M+dxn2,
(2.15)
such that
g^|M=g. We fix a metric
g^ on the
M^ such that
g^|M=g.
Let
F:L2(Rt)→L2(Rλ); F(u)(λ)=∫e-ivtu(t)dt
denote the Fourier transformation and φ(R+¯)=r+φ(R)(similarly define φ(R-¯)), where ϕ(R) denotes the Schwartz space and
r+:C∞(R)→C∞(R+¯); f→f|R+¯; R+¯={x≥0;x∈R}.
We define H+=F(φ(R+¯)); H0-=F(φ(R-¯)) which are orthogonal to each other. We have the following property: h∈H+ (H0-) if and only if h ∈ C∞ (R) which has an analytic extension to the lower (upper) complex half-plane {Imξ < 0} ({Imξ > 0}) such that for all nonnegative integer l,
dlhdξl(ξ)∼∑k=1∞dldξl(ckξk),
as |
ξ|→ +∞, Im
ξ ≤ 0 (Im
ξ ≥ 0).
Let H′ be the space of all polynomials and H-=H0-⊕H′; H=H+⊕H-. Denote by π+(π−) respectively the projection on H+(H−). For calculations, we take H=H˜={rational functions having no poles on the real axis}( H˜ is a dense set in the topology of H). Then on H˜,
π+h(ξ0)=12πilimu→0-∫Γ+h(ξ)ξ0+iu-ξdξ,
(2.16)
where Γ
+ is a Jordan close curve included Im(
ξ) > 0 surrounding all the singularities of
h in the upper half-plane and
ξ0 ∈
R. Similarly, define
π′ on
H˜,
π′h=12π∫Γ+h(ξ)dξ.
(2.17)
So, π′(H−) = 0. For h ∈ H ∩ L1(R), π′h=12π∫Rh(v)dv and for h ∈ H+ ∩ L1(R), π′h = 0.
Next we give the basic notions of Laplace type operators. Let M be a smooth compact oriented Riemannian n-dimensional manifolds without boundary and V′ be a vector bundle on M. Any differential operator P of Laplace type has locally the form
P=-(gij∂i∂j+Ai∂i+B),
(2.18)
where
Ai and
B are smooth sections of the endomorphism End(
V′) on
M. If
P is a Laplace type operator with the form
(2.18), then there is a unique connection ∇ on
V′ and a unique endomorphism
E′ such that
P=-[gij(∇∂i∇∂j-∇∇∂iL∂j)+E′],
(2.19)
where ∇
L is the Levi-Civita connection on
M. Moreover (with local frames of
T∗M and
V′), Δ
∂i = Δ
∂i +
ωi and
E′ are related to
gij,
Ai and
B through
ωi=12gij(Ai+gklΓkljid),
(2.20)
E′=B-gij(∂i(ωj)+ωiωj-ωkΓijk),
(2.21)
where
Γklj is the Christoffel coefficient of ∇
L.
By the above definitions, we establish the main theorem in this section. One has the following Lichneriowicz formulas.
Theorem 2.1.
The following equalities hold:
D1D2=-[gij(∇∂i∇∂j-∇∇∂iL∂j)]-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)+14s+14∑i[λ2c(ei)l(v)+λ1l(v)c(ei)]2-12[λ1∇ejTM(l(v))c(ej)-λ2c(ej)∇ejTM(l(v))],
(2.22)
D2*D1*=-[gij(∇∂i∇∂j-∇∇∂iL∂j)]-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)+14s+14∑i[λ1c(ei)ɛ(v*)+λ2ɛ(v*)c(ei)]2-12[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(ɛ(v*))],
(2.23)
D2*D1=-[gij(∇∂i∇∂j-∇∇∂iL∂j)]-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)+14s+λ1λ2ɛ(v*)l(v)+14∑i[λ1c(ei)l(v)+λ2ɛ(v*)c(ei)]2-12[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(l(v))],
(2.24)
where s is the scalar curvature.
Proof. By (2.13), we note that
D1D2=(d+δ)2+λ2(d+δ)l(v)+λ1l(v)(d+δ)+λ1λ2[l(v)]2.
(2.25)
By [20], the local expression of (d + δ)2 is
(d+δ)2=-Δ0-18∑ijklRijklc¯(ei˜)c¯(ej˜)c(ek˜)c(el˜)+14s.
(2.26)
By [20] and [1], we have
-Δ0=Δ=-gij(∇iL∇jL-Γijk∇kL).
(2.27)
λ2(d+δ)l(v)+λ1l(v)(d+δ)=∑i,jgi,j[λ2c(∂i)l(v)+λ1l(v)c(∂i)]∂j+∑i,jgi,j[λ1l(v)c(∂i)(σi+ai)+λ2c(∂i)∂j(l(v))+λ2c(∂i)(σi+ai)l(v)];
(2.28)
[l(v)]2=0.
(2.29)
then we obtain
D1D2=-∑i,jgi,j[∂i∂j+2σi∂j+2ai∂j-Γi,jk∂k+(∂iσj)+(∂iaj)+σiσj+σiaj+aiσj+aiaj-Γi,jkσk-Γi,jkak]+∑i,jgi,j[λ2c(∂i)l(v)+λ1l(v)c(∂i)]∂j-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)+14s+∑i,jgi,j[λ2c(∂i)∂j(l(v))+λ2c(∂i)(σi+ai)l(v)+λ1l(v)c(∂i)(σi+ai)].
(2.30)
Similarly, we have
D2*D1*=-∑i,jgi,j[∂i∂j+2σi∂j+2ai∂j-Γi,jk∂k+(∂iσj)+(∂iaj)+σiσj+σiaj+aiσj+aiaj-Γi,jkσk-Γi,jkak]+∑i,jgi,j[λ1c(∂i)ɛ(v*)+λ2ɛ(v*)c(∂i)]∂j-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)+14s+∑i,jgi,j[λ1c(∂i)∂j(ɛ(v*))+λ1c(∂i)(σi+ai)ɛ(v*)+λ2ɛ(v*)c(∂i)(σi+ai)].
(2.31)
and
D2*D1=-∑i,jgi,j[∂i∂j+2σi∂j+2ai∂j-Γi,jk∂k+(∂iσj)+(∂iaj)+σiσj+σiaj+aiσj+aiaj-Γi,jkσk-Γi,jkak]+∑i,jgi,j[λ1c(∂i)l(v)+λ2ɛ(v*)c(∂i)]∂j-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)+14s+λ1λ2×ɛ(v*)l(v)+∑i,jgi,j[λ1c(∂i)∂j(l(v))+λ1c(∂i)(σi+ai)l(v)+λ2ɛ(v*)c(∂i)(σi+ai)].
(2.32)
By (2.18), (2.20) and (2.30) we have
(ωi)D1D2=σi+ai-12[λ2c(∂i)l(v)+λ1l(v)c(∂i)],
(2.33)
E′D1D2=∑i,jgi,j[∂i(σj+aj)+σiσj+σiaj+aiσj-Γijkσk-Γijkak+aiaj-λ2c(∂i)∂j(l(v))-c(∂i)(σj+aj)λ2l(v)-λ1l(v)c(∂i)(σj+aj)]+18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)-14s-λ1λ2[l(v)]2-∑i,jgi,j{∂i(σj+aj)-12∂i[c(∂j)λ2l(v)+λ1l(v)c(∂j)]+[σi+ai-12[λ2c(∂i)l(v)+λ1l(v)c(∂i)]]×[σj+aj-12[λ2c(∂j)l(v)+λ1l(v)c(∂j)]]-[σk+ak-12[c(∂k)λ2l(v)+λ1l(v)c(∂k)]]Γijk}.
(2.34)
Let c(Y) denote the Clifford action, where Y is a smooth vector field on M. Since E′ is globally defined on M, taking normal coordinates at x0, we have σi(x0) = 0, ai(x0) = 0, ∂j[c(∂j)](x0) = 0, Γk(x0) = 0, gij(x0)=δij. By (2.21), then we have
E′D1D2(x0)=18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)-14s-14∑i[λ2c(ei)l(v)+λ1l(v)c(ei)]2+12[λ1∇ejTM(l(v))c(ej)-λ2c(ej)∇ejTM(l(v))].
(2.35)
Similarly, we have
E′D2*D1*(x0)=18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)-14s-14∑i[λ1c(ei)ɛ(v*)+λ2ɛ(v*)c(ei)]2+12[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(ɛ(v*))].
(2.36)
E′D2*D1(x0)=18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)-14s-14∑i[λ1c(ei)l(v)+λ2ɛ(v*)c(ei)]2+12[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(l(v))]-λ1λ2ɛ(v*)l(v).
(2.37)
which, together with
(2.19), we complete the proof.
The noncommutative residue of a generalized laplacian Δ is expressed by [1], as
(n-2)ϕ(Δ)=(4π)-n2Γ(n2)res˜(Δ-n2+1),
(2.38)
where
φ(Δ) denotes the integral over the diagonal part of the second coefficient of the heat kernel expansion of Δ. Since
D1D2,
D2*D1* and
D2*D1 are generalized laplacian opeartors, we have
Wres(D1D2)-n-22=(n-2)(4π)n2(n2-1)!∫Mtrace(16s+E′D1D2)dVolM,
(2.39)
where Wres is the noncommutative residue.
Similarly, we have
Wres(D2*D1*)-n-22=(n-2)(4π)n2(n2-1)!∫Mtrace(16s+E′D2*D1*)dVolM,
(2.40)
Wres(D2*D1)-n-22=(n-2)(4π)n2(n2-1)!∫Mtrace(16s+E′D2*D1)dVolM.
(2.41)
By Theorem 2.1 and its proof, we have
Theorem 2.2.
For even n-dimensional compact oriented manifolds without boundary, the following equalities holds:
Wres(D1D2)-n-22=(n-2)(4π)n2(n2-1)!∫M2n(-112s-14(λ12+λ22)|v|2)dVolM,
(2.42)
Wres(D2*D1*)-n-22=(n-2)(4π)n2(n2-1)!∫M2n(-112s-14(λ12+λ22)|v*|2)dVolM,
(2.43)
Wres(D2*D1)-n-22=(n-2)(4π)n2(n2-1)!∫M[2n(-112s-λ12+λ22-2nλ1λ2+4λ1λ28|v|2)+12tr[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(l(v))]]dVolM,
(2.44)
where s is the scalar curvature.
3. A KASTLER-KALAU-WALZE TYPE THEOREM FOR 4-DIMENSIONAL MANIFOLDS WITH BOUNDARY
In this section, we prove the Kastler-Kalau-Walze type theorem for 4-dimensional oriented compact manifold with boundary about statistical de Rham Hodge Operators.
Denote by M a n-dimensional manifold with boundary ∂M. We assume that M is compact and oriented. Let ℬ be Boutet de Monvel’s algebra, we now recall the main theorem in [4,15].
Theorem 3.1.
[4](Fedosov-Golse-Leichtnam-Schrohe) Let X and ∂X be connected, dimX = n ≥ 3, A=(π+P+GKTS)∈ ℬ, and denote by p, b and s the local symbols of P, G and S respectively. Define:
Wres˜(A)=∫X∫StraceE[p-n(x,ξ)]σ(ξ)dx+2π∫∂X∫S′{traceE[(trb-n)(x′,ξ′)]+traceF[s1-n(x′,ξ′)]}σ(ξ′)dx′.
(3.1)
Then
a) Wres˜([A,B])=0, for any A, B ∈ ℬ;
b) It is a unique continuous trace on ℬ/ℬ−∞.
Definition 3.2.
[15] Lower dimensional volume of spin manifolds with boundary is defined by
Voln(p1,p2)M≔Wres˜[π+D-p1∘π+D-p2].
(3.2)
By (2.1.4)-(2.1.8) in [15], we get
Wres˜[π+D-p1∘π+D-p2]=∫M∫|ξ|=1trace∧*T*M[σ-n(D-p1-p2)]σ(ξ)dx+∫∂MΦ,
(3.3)
and
Φ=∫|ξ′|=1∫-∞+∞∑j,k=0∞∑(-i)|α|+j+k+1α!(j+k+1)!×trace∧*T*M[∂xnj∂ξ′α∂ξnkσr+(D-p1)(x′,0,ξ′,ξn)×∂x′α∂ξnj+1∂xnkσl(D-p2)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′,
(3.4)
where the sum is taken over
r +
l −
k − |
α|−
j − 1 = −
n,
r ≤ −
p1,
l ≤ −
p2.
For any fixed point x0 ∈ ∂M, we choose the normal coordinates U of x0 in ∂M (not in M) and compute Φ(x0) in the coordinates U˜=U×[0,1)⊂M and the metric 1h(xn)g∂M+dxn2. The dual metric of gM on U˜ is h(xn)g∂M+dxn2. Write gijM=gM(∂∂xi,∂∂xj); gMij=gM(dxi,dxj), then
[gi,jM]=[1h(xn)[gi,j∂M]001]; [gMi,j]=[h(xn)[g∂Mi,j]001],
(3.5)
and
∂xsgij∂M(x0)=0,1≤i,j≤n-1; gijM(x0)=δij.
(3.6)
We will give following three lemmas as computation tools.
Lemma 3.3.
[15] With the metric gM on M near the boundary
∂xj(|ξ|gM2)(x0)={0 if j<n,h′(0)|ξ′|g∂M2 if j=n;
(3.7)
∂xj[c(ξ)](x0)={0 if j<n,∂xn(c(ξ′))(x0) if j=n,
(3.8)
where ξ = ξ′ + ξndxn.
Lemma 3.4.
[15] With the metric gM on M near the boundary
ωs,t(ei)(x0)={ωn,i(ei)(x0)=12h′(0) if s=n,t=i,i<n;ωi,n(ei)(x0)=-12h′(0) if s=i,t=n,i<n;ωs,t(ei)(x0)=0 other cases ,
(3.9)
where (ωs,t) denotes the connection matrix of Levi-Civita connection ∇L.
Lemma 3.5.
[15] When i < n, then
Γiin(x0)=12h′(0); Γnii(x0)=-12h′(0); Γini(x0)=-12h′(0),
in other cases,
Γsti(x0)=0.
By (3.3) and (3.4), we firstly compute
Wres˜[π+D2-1∘π+D1-1]=∫M∫|ξ|=1trace∧*T*M[σ-4(D1D2)-1]σ(ξ)dx+∫∂MΦ1,
(3.10)
where
Φ1=∫|ξ′|=1∫-∞+∞∑j,k=0∞∑(-i)|α|+j+k+1α!(j+k+1)!×trace∧*T*M[∂xnj∂ξ′α∂ξnkσr+(D2-1)(x′,0,ξ′,ξn)×∂x′α∂ξnj+1∂xnkσl(D1-1)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′,
(3.11)
and the sum is taken over
r +
l −
k −
j − |
α|= −3,
r ≤ −1,
l ≤ −1.
Locally we can use Theorem 2.2 (2.42) to compute the interior of Wres˜[π+D2-1∘π+D1-1], we have
∫M∫|ξ|=1trace∧*T*M[σ-4(D1D2)-1]σ(ξ)dx=32π2∫M(-43s-4(λ12+λ22)|v|2)dVolM.
(3.12)
So we only need to compute ∫∂M Φ1. Let us now turn to compute the symbols of some operators. By (2.10)-(2.14), then we have the following symbols of some operators.
Lemma 3.6.
The following identities hold:
σ1(Dj)=σ1(Dj*)=ic(ξ), (j=1,2);σ0(Dj)=14∑i,s,tωs,t(ei)c(ei)c¯(es)c¯(et)-14∑i,s,tωs,t(ei)c(ei)c(es)c(et)+λjl(v), (j=1,2);σ0(Dj*)=14∑i,s,tωs,t(ei)c(ei)c¯(es)c¯(et)-14∑i,s,tωs,t(ei)c(ei)c(es)c(et)+λjɛ(v*), (j=1,2).
(3.13)
Write
Dxα=(-i)|α|∂xα; σ(D)=p1+p0; σ(D-1)=∑j=1∞q-j.
(3.14)
By the composition formula of pseudodifferential operators, we have
1=σ(D∘D-1)=∑α1α!∂ξα[σ(D)]Dxα[σ(D-1)]=(p1+p0)(q-1+q-2+q-3+⋯) +∑j(∂ξjp1+∂ξjp0)(Dxjq-1+Dxjq-2+Dxjq-3+⋯)=p1q-1+(p1q-2+p0q-1+∑j∂ξjp1Dxjq-1)+⋯,
(3.15)
so
q-1=p1-1; q-2=-p1-1[p0p1-1+∑j∂ξjp1Dxj(p1-1)].
(3.16)
By Lemma 3.6, we have some symbols of operators.
Lemma 3.7.
The following identities hold:
σ-1(Dj-1)=σ-1((Dj*)-1)=ic(ξ)|ξ|2, (j=1,2);σ-2(Dj-1)=c(ξ)σ0(Dj)c(ξ)|ξ|4+c(ξ)|ξ|6∑jc(dxj)[∂xj(c(ξ))|ξ|2-c(ξ)∂xj(|ξ|2)], (j=1,2);σ-2((Dj*)-1)=c(ξ)σ0(Dj*)c(ξ)|ξ|4+c(ξ)|ξ|6∑jc(dxj)[∂xj(c(ξ))|ξ|2-c(ξ)∂xj(|ξ|2)], (j=1,2).
(3.17)
From the remark above, now we can compute Φ1(see formula (3.11) for the definition of Φ1). We use tr as shorthand of trace. Since n = 4, then tr∧∗ T∗ M [id]= 16, since the sum is taken over r + l − k − j − |α|= −3, r ≤ −1, l ≤ −1, we have the following five cases:
case 1) I) r = −1, l = −1, k = j = 0, |α|= 1.
By (3.11), we get
case 1) I)=-∫|ξ′|=1∫-∞+∞∑|α|=1tr[∂ξ′απξn+σ-1(D2-1)×∂x′α∂ξnσ-1(D1-1)](x0)dξnσ(ξ′)dx′.
(3.18)
By Lemma 3.3, for i < n, then
∂xi(ic(ξ)|ξ|2)(x0)=i∂xi[c(ξ)](x0)|ξ|2-ic(ξ)∂xi(|ξ|2)(x0)|ξ|4=0,
(3.19)
so case 1) I) vanishes.
case 1) II) r = −1, l = −1, k = |α|= 0, j = 1.
By (3.11), we get
case 1) II)=-12∫|ξ′|=1∫-∞+∞tr[∂xnπξn+σ-1(D2-1)×∂ξn2σ-1(D1-1)](x0)dξnσ(ξ′)dx′.
(3.20)
By Lemma 3.7, we have
∂ξn2σ-1(D1-1)(x0)=i(-6ξnc(dxn)+2c(ξ′)|ξ|4+8ξn2c(ξ)|ξ|6);
(3.21)
∂xnσ-1(D2-1)(x0)=i∂xnc(ξ′)(x0)|ξ|2-ic(ξ)|ξ′|2h′(0)|ξ|4.
(3.22)
By (2.16), (2.17) and the Cauchy integral formula we have
πξn+[c(ξ)|ξ|4](x0)||ξ′|=1=πξn+[c(ξ′)+ξnc(dxn)(1+ξn2)2]=12πilimu→0-∫Γ+c(ξ′)+ηnc(dxn)(ηn+i)2(ξn+iu-ηn)(ηn-i)2dηn=-(iξn+2)c(ξ′)+ic(dxn)4(ξn-i)2.
(3.23)
Similarly, we have
πξn+[i∂xnc(ξ′)|ξ|2](x0)||ξ′|=1=∂xn[c(ξ′)](x0)2(ξn-i).
(3.24)
then
πξn+∂xnσ-1(D2-1)||ξ′|=1=∂xn[c(ξ′)](x0)2(ξn-i)+ih′(0)[(iξn+2)c(ξ′)+ic(dxn)4(ξn-i)2].
(3.25)
By the relation of the Clifford action and trAB = trBA, we have the equalities:
tr[c(ξ′)c(dxn)]=0; tr[c(dxn)2]=-16; tr[c(ξ′)2](x0)||ξ′|=1=-16;tr[∂xnc(ξ′)c(dxn)]=0; tr[∂xnc(ξ′)c(ξ′)](x0)||ξ′|=1=-8h′(0); tr[c¯(ei)c¯(ej)c(ek)c(el)]=0(i≠j).
(3.26)
By (3.26) and a direct computation, we have
h′(0)tr[(iξn+2)c(ξ′)+ic(dxn)4(ξn-i)2×(6ξnc(dxn)+2c(ξ′)(1+ξn2)2-8ξn2[c(ξ′)+ξnc(dxn)](1+ξn2)3)](x0)||ξ′|=1 =-16h′(0)-2iξn2-ξn+i(ξn-i)4(ξn+i)3.
(3.27)
Similarly, we have
-itr[(∂xn[c(ξ′)](x0)2(ξn-i))×(6ξnc(dxn)+2c(ξ′)(1+ξn2)2-8ξn2[c(ξ′)+ξnc(dxn)](1+ξn2)3)](x0)||ξ′|=1=-8ih′(0)3ξn2-1(ξn-i)4(ξn+i)3.
(3.28)
Then
case 1) II)=-∫|ξ′|=1∫-∞+∞4ih′(0)(ξn-i)2(ξn-i)4(ξn+i)3dξnσ(ξ′)dx′=-4ih′(0)Ω3∫Γ+1(ξn-i)2(ξn+i)3dξndx′=-4ih′(0)Ω32πi[1(ξn+i)3]′|ξn=idx′=-32πh′(0)Ω3dx′,
where Ω3 is the canonical volume of S3.
case 1) III) r = −1, l = −1, j = |α|= 0, k = 1.
By (3.11), we get
case 1) III)=-12∫|ξ′|=1∫-∞+∞tr[∂ξnπξn+σ-1(D2-1)×∂ξn∂xnσ-1(D1-1)](x0)dξnσ(ξ′)dx′.
(3.29)
By Lemma 3.7, we have
∂ξn∂xnσ-1(D1-1)(x0)||ξ′|=1=-ih′(0)[c(dxn)|ξ|4-4ξnc(ξ′)+ξnc(dxn)|ξ|6]-2ξni∂xnc(ξ′)(x0)|ξ|4;
(3.30)
∂ξnπξn+σ-1(D2-1)(x0)||ξ′|=1=-c(ξ′)+ic(dxn)2(ξn-i)2.
(3.31)
Similar to case 1) II), we have
tr{c(ξ′)+ic(dxn)2(ξn-i)2×ih′(0)[c(dxn)|ξ|4-4ξnc(ξ′)+ξnc(dxn)|ξ|6]}=8h′(0)i-3ξn(ξn-i)4(ξn+i)3
(3.32)
and
tr[c(ξ′)+ic(dxn)2(ξn-i)2×2ξni∂xnc(ξ′)(x0)|ξ|4]=-8ih′(0)ξn(ξn-i)4(ξn+i)2.
(3.33)
So we have
case 1) III)=-∫|ξ′|=1∫-∞+∞h′(0)4(i-3ξn)(ξn-i)4(ξn+i)3dξnσ(ξ′)dx′-∫|ξ′|=1∫-∞+∞h′(0)4iξn(ξn-i)4(ξn+i)2dξnσ(ξ′)dx′=-h′(0)Ω32πi3![4(i-3ξn)(ξn+i)3](3)|ξn=idx′+h′(0)Ω32πi3![4iξn(ξn+i)2](3)|ξn=idx′=32πh′(0)Ω3dx′.
(3.34)
case 2) r = −2, l = −1, k = j = |α|= 0.
By (3.11), we get
case 2)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-2(D2-1)×∂ξnσ-1(D1-1)](x0)dξnσ(ξ′)dx′.
(3.35)
By Lemma 3.7, we have
σ-2(D2-1)(x0)=c(ξ)σ0(D2)(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)|ξ|∂M2],
(3.36)
where
σ0(D2)(x0)=14∑s,t,iωs,t(ei)(x0)c(ei)c¯(es)c¯(et)-14∑s,t,iωs,t(ei)(x0)c(ei)c(es)c(et))+λ2l(v).
(3.37)
Write
A(x0)=14∑s,t,iωs,t(ei)(x0)c(ei)c¯(es)c¯(et);B(x0)=-14∑s,t,iωs,t(ei)(x0)c(ei)c(es)c(et)).
(3.38)
Then
πξn+σ-2(D2-1(x0))||ξ′|=1=πξn+[c(ξ)A(x0)c(ξ)(1+ξn2)2]+πξn+[λ2c(ξ)(l(v)(x0))c(ξ)(1+ξn2)2] +πξn+[c(ξ)B(x0)c(ξ)+c(ξ)c(dxn)∂xn[c(ξ′)](x0)(1+ξn2)2-h′(0)c(ξ)c(dxn)c(ξ)(1+ξn2)3].
(3.39)
By direct calculations, we have
πξn+[c(ξ)A(x0)c(ξ)(1+ξn2)2]=πξn+[c(ξ′)A(x0)c(ξ′)(1+ξn2)2]+πξn+[ξnc(ξ′)A(x0)c(dxn)(1+ξn2)2]+πξn+[ξnc(dxn)A(x0)c(ξ′)(1+ξn2)2]+πξn+[ξn2c(dxn)A(x0)c(dxn)(1+ξn2)2]=-c(ξ′)A(x0)c(ξ′)(2+iξn)4(ξn-i)2+ic(ξ′)A(x0)c(dxn)4(ξn-i)2+ic(dxn)A(x0)c(ξ′)4(ξn-i)2+-iξnc(dxn)A(x0)c(dxn)4(ξn-i)2.
(3.40)
Since
c(dxn)A(x0)=-14h′(0)∑i=1n-1c(ei)c¯(ei)c(en)c¯(en),
(3.41)
by the relation of the Clifford action and tr
AB = tr
BA, we have the equalities:
tr[c(ei)c¯(ei)c(en)c¯(en)]=0 (i<n); tr[Ac(dxn)]=0; tr[c¯(ξ′)c(dxn)]=0;
(3.42)
Since
∂ξnσ-1(Dv-1)=∂ξnq-1(x0)||ξ′|=1=i[c(dxn)1+ξn2-2ξnc(ξ′)+2ξn2c(dxn)(1+ξn2)2].
(3.43)
By (3.40), (3.42) and (3.43), we have
tr[πξn+[c(ξ)A(x0)c(ξ)(1+ξn2)2]×∂ξnσ-1(D1-1)(x0)]||ξ′|=1=12(1+ξn2)2tr[c(ξ′)A(x0)]+i2(1+ξn2)2tr[c(dxn)A(x0)]=12(1+ξn2)2tr[c(ξ′)A(x0)].
(3.44)
We note that i < n, ∫|ξ′|=1{ξi1 ξi2 ··· ξi2d+1}σ(ξ′) = 0, so tr[c(ξ′)A(x0)] has no contribution for computing case 2).
By direct calculations, we have
πξn+[c(ξ)B(x0)c(ξ)+c(ξ)c(dxn)∂xn[c(ξ′)](x0)(1+ξn2)2]-h′(0)πξn+[c(ξ)c(dxn)c(ξ)(1+ξn)3]≔P1-P2,
(3.45)
where
P1=-14(ξn-i)2[(2+iξn)c(ξ′)b02(x0)c(ξ′)+iξnc(dxn)b02(x0)c(dxn)+(2+iξn)c(ξ′)c(dxn)∂xnc(ξ′)+ic(dxn)b02(x0)c(ξ′)+ic(ξ′)b02(x0)c(dxn)-i∂xnc(ξ′)]
(3.46)
and
P2=h′(0)2[c(dxn)4i(ξn-i)+c(dxn)-ic(ξ′)8(ξn-i)2+3ξn-7i8(ξn-i)3[ic(ξ′)-c(dxn)]].
(3.47)
By (3.43) and (3.46), we have
tr[P1×∂ξnσ-1(D1-1)]||ξ′|=1=-6ih′(0)(1+ξn2)2+2h′(0)ξn2-iξn-2(ξn-i)(1+ξn2)2.
(3.48)
By (3.43) and (3.47), we have
tr[P2×∂ξnσ-1(D1-1)]||ξ′|=1=i2h′(0)-iξn2-ξn+4i4(ξn-i)3(ξn+i)2tr[id]=8ih′(0)-iξn2-ξn+4i4(ξn-i)3(ξn+i)2.
(3.49)
By (3.48) and (3.49), we have
-i∫|ξ′|=1∫-∞+∞tr[(P1-P2)×∂ξnσ-1(D1-1)](x0)dξnσ(ξ′)dx′=-Ω3∫Γ+8[-34h′(0)](ξn-i)+ih′(0)(ξn-i)3(ξn+i)2dξndx′=92πh′(0)Ω3dx′.
(3.50)
Similar to (3.44), we have
tr[πξn+[λ2c(ξ)l(v)(x0)c(ξ)(1+ξn2)2]×∂ξnσ-1(D1)-1)(x0)]||ξ′|=1 =12(1+ξn2)2tr[λ2c(ξ′)l(v)(x0)]+i2(1+ξn2)2tr[λ2c(dxn)l(v)(x0)].
(3.51)
By the relation of the Clifford action and trAB = trBA, we have the equalities:
tr[c(dxn)l(v)]=8〈v,dxn〉; tr[c(ξ′)l(v)]=8〈v,ξ′〉;
(3.52)
By (3.51) and (3.52), we have
-i∫|ξ′|=1∫-∞+∞tr[πξn+[λ2c(ξ)(l(v))c(ξ)(1+ξn2)2]×∂ξnσ-1(D1-1)](x0)dξnσ(ξ′)dx′=2λ2π〈v,dxn〉Ω3dx′.
(3.53)
By (3.44), (3.50) and (3.53), we have
case 2)=[92πh′(0)+2λ2π〈v,dxn〉]Ω3dx′.
(3.54)
case 3) r = −1, l = −2, k = j = |α|= 0.
By (3.11), we get
case 3)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1(D2-1)×∂ξnσ-2(D1-1)](x0)dξnσ(ξ′)dx′.
(3.55)
By (2.16) and Lemma 3.7, we have
πξn+σ-1(D2-1)||ξ′|=1=c(ξ′)+ic(dxn)2(ξn-i).
(3.56)
By (3.36), (3.37) and (3.38), we have
∂ξnσ-2(D1-1)(x0)||ξ′|=1=∂ξn{c(ξ)[A(x0)+B(x0)+(λ1l(v)(x0))]c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)]}=∂ξn{c(ξ)A(x0)]c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)]}+∂ξnc(ξ)B(x0)c(ξ)|ξ|4+λ1∂ξnc(ξ)(l(v)(x0))c(ξ)|ξ|4.
(3.57)
By direct calculation, we have
∂ξnc(ξ)A(x0)c(ξ)|ξ|4=c(dxn)A(x0)c(ξ)|ξ|4+c(ξ)A(x0)c(dxn)|ξ|4-4ξnc(ξ)A(x0)c(ξ)|ξ|6;
(3.58)
∂ξnc(ξ)(l(v)(x0))c(ξ)|ξ|4=c(dxn)(l(v)(x0))c(ξ)|ξ|4+c(ξ)(l(v)(x0))c(dxn)|ξ|4-4ξnc(ξ)(l(v)(x0))c(ξ)|ξ|4.
(3.59)
Write
P3=c(ξ)B(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)],
then
∂ξn(P3)=1(1+ξn2)3[(2ξn-2ξn3)c(dxn)Bc(dxn)+(1-3ξn2)c(dxn)Bc(ξ′)+(1-3ξn2)c(ξ′)Bc(dxn)-4ξnc(ξ′)Bc(ξ′)+(3ξn2-1)∂xnc(ξ′)-4ξnc(ξ′)c(dxn)∂xnc(ξ′)+2h′(0)c(ξ′)+2h′(0)ξnc(dxn)]+6ξnh′(0)c(ξ)c(dxn)c(ξ)(1+ξn2)4.
(3.60)
By (3.56) and (3.58), we have
tr[πξn+σ-1(D2-1)×∂ξnc(ξ)Ac(ξ)|ξ|4](x0)||ξ′|=1 =-1(ξ-i)(ξ+i)3tr[c(ξ′)A(x0)]+i(ξ-i)(ξ+i)3tr[c(dxn)A(x0)].
(3.61)
By (3.42), we have
tr[πξn+σ-1(D2-1)×∂ξnc(ξ)Ac(ξ)|ξ|4](x0)||ξ′|=1=-1(ξ-i)(ξ+i)3tr[c(ξ′)A(x0)].
(3.62)
We note that i < n, ∫|ξ′|=1{ξi1 ξi2 ··· ξi2d+1}σ(ξ′) = 0, so tr[c(ξ′)A(x0)] has no contribution for computing case 3).
By (3.56) and (3.60), we have
tr[πξn+σ-1(D2-1)×∂ξn(P3)](x0)||ξ′|=1=12h′(0)(iξn2+ξn-2i)(ξ-i)3(ξ+i)3+48h′(0)iξn(ξ-i)3(ξ+i)4,
(3.63)
then
-iΩ3∫Γ+[12h′(0)(iξn2+ξn-2i)(ξn-i)3(ξn+i)3+48h′(0)iξn(ξn-i)3(ξn+i)4]dξndx′=-92πh′(0)Ω3dx′.
(3.64)
By (3.56) and (3.59), we have
tr[πξn+σ-1(D2-1)×∂ξnc(ξ)(λ1l(v))c(ξ)|ξ|4](x0)||ξ′|=1 =-1(ξ-i)(ξ+i)3tr[c(ξ′)(λ1l(v))(x0)]+i(ξ-i)(ξ+i)3tr[c(dxn)(λ1l(v))(x0)].
(3.65)
By (3.52), we have
-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1(D2-1)×∂ξnc(ξ)(λ1l(v))c(ξ)|ξ|4](x0)dξnσ(ξ′)dx′ =-i∫|ξ′|=1∫-∞+∞i(ξ-i)(ξ+i)3[tr[c(dxn)(λ1l(v))(x0)]+itr[c(ξ′)(λ1l(v))(x0)]]dξnσ(ξ′)dx′ =-π4[tr[c(dxn)(λ1l(v))]+itr[c(ξ′)(λ1l(v))(x0)]]Ω3dx′ =-2πλ1〈v,dxn〉Ω3dx′.
(3.66)
So we have
case 3)=[-92πh′(0)-2λ1π〈v,dxn〉]Ω3dx′.
(3.67)
Since Φ1 is the sum of the cases 1), 2) and 3), Φ1 = 2(λ2 − λ1)π 〈v, dxn〉Ω3dx′.
Theorem 3.8.
Let M be a 4-dimensional oriented compact manifold with the boundary ∂M and the metric gM as above, Di (i = 1, 2) be statistical de Rham Hodge Operators on M^, then
Wres˜[π+D2-1∘π+D1-1]=32π2∫M(-43s-4(λ12+λ22)|v|2)dVolM+∫∂M2(λ2-λ1)π〈v,dxn〉Ω3dx′,
(3.68)
where s is the scalar curvature.
Let D = d + δ + l(v), D∗ = d + δ + ε(v∗).
Corollary 3.9.
For 4-dimensional oriented compact manifold M with the boundary ∂M, when λ1 = λ2 = 1, we get
Wres˜[π+D-1∘π+D-1]=32π2∫M(-43s-8|v|2)dVolM,
where s is the scalar curvature.
On the other hand, we also prove the Kastler-Kalau-Walze type theorem for 4-dimensional manifolds with boundary associated with (Di*)2 (i=1,2). By (3.3) and (3.4), we will compute
Wres˜[π+(D1*)-1∘π+(D2*)-1]=∫M∫|ξ|=1trace∧*T*M[σ-4((D2*D1*)-1)]σ(ξ)dx+∫∂MΦ2,
(3.69)
where
Φ2=∫|ξ′|=1∫-∞+∞∑j,k=0∞∑(-i)|α|+j+k+1α!(j+k+1)!×trace∧*T*M[∂xnj∂ξ′α∂ξnkσr+((D1*)-1)(x′,0,ξ′,ξn) ×∂x′α∂ξnj+1∂xnkσl((D2*)-1)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′,
(3.70)
and the sum is taken over
r +
l −
k −
j − |
α|= −3,
r ≤ −1,
l ≤ −1.
Locally we can use Theorem 2.2 (2.43) to compute the interior of Wres˜[π+(D1*)-1∘π+(D2*)-1], we have
∫M∫|ξ|=1trace∧*T*M[σ-4((D2*D1*)-1)]σ(ξ)dx=32π2∫M(-43s-4(λ12+λ22)|v*|2)dVolM.
(3.71)
So we only need to compute ∫∂M Φ2. From the remark above, now we can compute Φ2 (see formula (3.70) for the definition of Φ2). We use tr as shorthand of trace. Since n = 4, then tr∧∗ T∗ M[id] = 16, since the sum is taken over r + l − k − j− |α| = −3, r ≤ − 1, l ≤ −1, then we have the following five cases:
case a) I) r = −1, l = −1, k = j = 0, |α|= 1.
By (3.70), we get
case a) I)=-∫|ξ′|=1∫-∞+∞∑|α|=1tr[∂ξ′απξn+σ-1((D1*)-1)×∂x′α∂ξnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.72)
case a) II) r = −1, l = −1, k = |α|= 0, j = 1.
By (3.70), we get
case a) II)=-12∫|ξ′|=1∫-∞+∞tr[∂xnπξn+σ-1((D1*)-1)×∂ξn2σ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.73)
case a) III) r = −1, l = −1, j = |α|= 0, k = 1
By (3.70), we get
case a) III)=-12∫|ξ′|=1∫-∞+∞tr[∂ξnπξn+σ-1((D1*)-1)×∂ξn∂xnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.74)
By Lemma 3.7, we have σ-1(Di-1)=σ-1((Di*)-1) (i=1,2). By (3.19)-(3.34), so case a) vanishes.
case b) r = −2, l = −1, k = j = |α|= 0.
By (3.70), we get
case b)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-2((D1*)-1)×∂ξnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.75)
By Lemma 3.7, we have σ-1(Di-1)=σ-1((Di*)-1) (i=1,2) and
σ-2((D1*)-1)(x0)=c(ξ)σ0(D1*)(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)|ξ|∂M2],
(3.76)
where
σ0(D1*)(x0)=A(x0)+B(x0)+λ1ɛ(v*). Then
πξn+σ-2((D1*)-1(x0))||ξ′|=1=πξn+[c(ξ)A(x0)c(ξ)(1+ξn2)2]+πξn+[c(ξ)(λ1ɛ(v*)(x0))c(ξ)(1+ξn2)2]+πξn+[c(ξ)B(x0)c(ξ)+c(ξ)c(dxn)∂xn[c(ξ′)](x0)(1+ξn2)2-h′(0)c(ξ)c(dxn)c(ξ)(1+ξn2)3].
(3.77)
By (3.40)-(3.50), we have
case b)=92πh′(0)Ω3dx′-i∫|ξ′|=1∫-∞+∞trace[πξn+[c(ξ)(λ1ɛ(v*)(x0))c(ξ)(1+ξn2)2] ×∂ξnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.78)
Similar to (3.51), we have
tr[πξn+[c(ξ)(λ1ɛ(v*)(x0))c(ξ)(1+ξn2)2]×∂ξnσ-1(D2*)-1)(x0)]||ξ′|=1 =12(1+ξn2)2tr[c(ξ′)λ1ɛ(v*)(x0)]+i2(1+ξn2)2tr[c(dxn)λ1ɛ(v*)(x0)].
(3.79)
By the relation of the Clifford action and trAB = trBA, we have the equalities:
tr[c(dxn)ɛ(v*)]=-8〈v*,∂∂xn〉; tr[c(ξ′)ɛ(v*)]=-8〈v*,g(ξ′,⋅)〉;
(3.80)
By (3.79) and (3.80), we have
-i∫|ξ′|=1∫-∞+∞tr[πξn+[c(ξ)λ1ɛ(v*)c(ξ)(1+ξn2)2]×∂ξnσ-1(D2-1)](x0)dξnσ(ξ′)dx′=-2λ1π〈v*,∂∂xn〉Ω3dx′.
(3.81)
By (3.78) and (3.81), we have
case b)=[92πh′(0)-2λ1π〈v*,∂∂xn〉]Ω3dx′.
(3.82)
case c) r = −1, l = −2, k = j = |α|= 0.
By (3.70), we get
case c)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1((D1*)-1)×∂ξnσ-2((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.83)
By Lemma 3.7, we have σ-1(Di-1)=σ-1((Di*)-1) (i=1,2). Similar to (3.57), we have
∂ξnσ-2((D2*)-1)(x0)||ξ′|=1=∂ξn{c(ξ)[A(x0)+B(x0)+(λ2ɛ(v*)(x0))]c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)]}=∂ξn{c(ξ)[A(x0)]c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2-c(ξ)h′(0)]}+∂ξnc(ξ)B(x0)c(ξ)|ξ|4 +∂ξnc(ξ)(λ2ɛ(v*)(x0))c(ξ)|ξ|4.
(3.84)
By (3.58)-(3.65), we have
case c)=-92πh′(0)-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1((D1*)-1)×∂ξn(c(ξ)(λ2ɛ(v*))c(ξ)|ξ|4)](x0)dξnσ(ξ′)dx′.
(3.85)
Similar to (3.66), we have
-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1((D1*)-1)×∂ξnc(ξ)(λ2ɛ(v*))c(ξ)|ξ|4](x0)dξnσ(ξ′)dx′ =-i∫|ξ′|=1∫-∞+∞i(ξ-i)(ξ+i)3[tr[c(dxn)(λ2ɛ(v*))(x0)]+itr[c(ξ′)(λ2ɛ(v*))(x0)]]dξnσ(ξ′)dx′ =-π4[tr[c(dxn)(λ2ɛ(v*))]+itr[c(ξ′)(λ2ɛ(v*))(x0)]]Ω3dx′ =2λ2π〈v*,∂∂xn〉Ω3dx′.
(3.86)
So, we have
case c)=[-92πh′(0)+2λ2π〈v*,∂∂xn〉]Ω3dx′.
(3.87)
Since Φ2 is the sum of the cases a), b) and c), so Φ2=2(λ2-λ1)π〈v*,∂∂xn〉Ω3dx′.
Theorem 3.10.
Let M be a 4-dimensional oriented compact manifold with the boundary ∂M and the metric gM as above, Di* (i=1,2) be statistical de Rham Hodge Operators on M^, then
Wres˜[π+(D1*)-1∘π+(D2*)-1]=32π2∫M(-43s-4(λ12+λ22)|v*|2)dVolM +∫∂M2(λ2-λ1)π〈v*,∂∂xn〉Ω3dx′,
(3.88)
where s is the scalar curvature.
Corollary 3.11.
For 4-dimensional oriented compact manifold M with the boundary ∂M, when λ1 = λ2 = 1, we get
Wres˜[π+(D*)-1∘π+(D*)-1]=32π2∫M(-43s-8|v*|2)dVolM,
where s is the scalar curvature.
Next, we prove the Kastler-Kalau-Walze type theorem for 4-dimensional manifolds with boundary associated with D2*D1. By (3.3) and (3.4), we will compute
Wres˜[π+D1-1∘π+(D2*)-1]=∫M∫|ξ|=1trace∧*T*M[σ-4((D2*D1)-1)]σ(ξ)dx+∫∂MΦ3,
(3.89)
where
Φ3=∫|ξ′|=1∫-∞+∞∑j,k=0∞∑(-i)|α|+j+k+1α!(j+k+1)!×trace∧*T*M[∂xnj∂ξ′α∂ξnkσr+(D1-1)(x′,0,ξ′,ξn) ×∂x′α∂ξnj+1∂xnkσl((D2*)-1)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′
(3.90)
and the sum is taken over
r +
l −
k −
j − |
α| = −3,
r ≤ −1,
l ≤ −1.
Locally we can use Theorem 2.2 (2.44) to compute the interior of Wres˜[π+D1-1∘π+(D2*)-1], we have
∫M∫|ξ|=1trace∧*T*M[σ-4((D2*D1)-1)]σ(ξ)dx =32π2∫M[-43s-2(λ12+λ22-4λ1λ2)|v|2+12tr[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(l(v))]]dVolM.
(3.91)
So we only need to compute ∫∂M Φ3. From the remark above, now we can compute Φ3 (see formula (3.89) for the definition of Φ3). We use tr as shorthand of trace. Since n = 4, then tr∧∗T∗M [id] = 16, since the sum is taken over r + l − k− j− |α| = −3, r ≤ −1, l ≤ − 1, then we have the following five cases:
case a) I) r = −1, l = −1, k = j = 0, |α|= 1.
By (3.89), we get
case a) I)=-∫|ξ′|=1∫-∞+∞∑|α|=1tr[∂ξ′απξn+σ-1(D1-1)×∂x′α∂ξnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.92)
case a) II) r = −1, l = −1, k = |α|= 0, j = 1.
By (3.89), we get
case a) II)=-12∫|ξ′|=1∫-∞+∞tr[∂xnπξn+σ-1((D1-1))×∂ξn2σ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.93)
case a) III) r = −1, l = −1, j = |α|= 0, k = 1.
By (3.89), we get
case a) III)=-12∫|ξ′|=1∫-∞+∞tr[∂ξnπξn+σ-1((D1-1))×∂ξn∂xnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.94)
By Lemma 3.7, we have σ-1(Di-1)=σ-1((Di*)-1) (i=1,2). By (3.19)-(3.34), so case a) vanishes.
case b) r = −2, l = −1, k = j = |α|= 0.
By (3.89), we get
case b)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-2(D1-1)×∂ξnσ-1((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.95)
By Lemma 3.7, we have σ-1(Di-1)=σ-1((Di*)-1) (i=1,2). By (3.35)-(3.54), we have
case b)=[92πh′(0)+2λ1π〈dxn,v〉]Ω3dx′.
(3.96)
case c) r = −1, l = −2, k = j = |α|= 0.
By (3.70), we get
case c)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1(D1-1)×∂ξnσ-2((D2*)-1)](x0)dξnσ(ξ′)dx′.
(3.97)
By Lemma 3.7, we have σ-1(Di-1)=σ-1((Di*)-1) (i=1,2). By (3.83)-(3.87), we have
case c)=[-92πh′(0)+2λ2π〈v*,∂∂xn〉]Ω3dx′.
(3.98)
Since Φ3 is the sum of the cases a), b) and c), so Φ3 = 2(λ1 + λ2)π 〈dxn, v〉Ω3dx′.
Theorem 3.12.
Let M be a 4-dimensional oriented compact manifold with the boundary ∂M and the metric gM as above, Di and Di*(i=1,2) be statistical de Rham Hodge Operators on M^, then
Wres˜[π+D1-1∘π+(D2*)-1]=32π2∫M[-43s-2(λ12+λ22-4λ1λ2)|v|2+12tr[λ2∇ejTM(ɛ(v*))c(ej) -λ1c(ej)∇ejTM(l(v))]]dVolM+∫∂M2(λ1+λ2)π〈dxn,v〉Ω3dx′,
(3.99)
where s is the scalar curvature.
Corollary 3.13.
For a 4-dimensional oriented compact manifold M with the boundary ∂M, when λ1 = λ2 = 1, we get
Wres˜[π+D-1∘π+(D*)-1]=32π2∫M[-43s+4|v|2+12tr[∇ejTM(ɛ(v*))c(ej)-c(ej)∇ejTM(l(v))]]dVolM +∫∂M4π〈dxn,v〉Ω3dx′,
where s is the scalar curvature.
4. A KASTLER-KALAU-WALZE TYPE THEOREM FOR 6-DIMENSIONAL MANIFOLDS WITH BOUNDARY
In this section, we prove the Kastler-Kalau-Walze type theorems for 6-dimensional manifolds with boundary. An application of (2.1.4) in [17] shows that
Wres˜[π+D1-1∘π+(D2*D1D2*)-1]=∫M∫|ξ|=1trace∧*T*M[σ-4((D2*D1)-2)]σ(ξ)dx+∫∂MΨ,
(4.1)
where
Ψ=∫|ξ′|=1∫-∞+∞∑j,k=0∞∑(-i)|α|+j+k+1α!(j+k+1)!×trace∧*T*M[∂xnj∂ξ′α∂ξnkσr+(D1-1)(x′,0,ξ′,ξn) ×∂x′α∂ξnj+1∂xnkσl((D2*D1D2*)-1)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′
(4.2)
and the sum is taken over
r +
ℓ −
k −
j − |
α|− 1 = −6,
r ≤ −1,
ℓ ≤ −3.
Locally we can use Theorem 2.2 (2.44) to compute the interior term of (4.1), we have
∫M∫|ξ|=1trace∧*T*M[σ-4((D2*D1)-2)]σ(ξ)dx =128π3∫M[-163s-8(λ12+λ22-8λ1λ2)|v|2+12tr[λ2∇ejTM(ɛ(v*))c(ej)-λ1c(ej)∇ejTM(l(v))]]dVolM.
(4.3)
So we only need to compute ∫∂M Ψ. Let us now turn to compute the specification of D2*D1D2*.
D2*D1D2*=∑i=1nc(ei)〈ei,dxl〉(-gij∂l∂i∂j)+∑i=1nc(ei)〈ei,dxl〉{-(∂lgij)∂i∂j-gij(4(σi+ai)∂j-2Γijk∂k)∂l}+∑i=1nc(ei)〈ei,dxl〉{-2(∂lgij)(σi+ai)∂j+gij(∂lΓijk)∂k-2gij[(∂lσi)+(∂lai)]∂j+(∂lgij)Γijk∂k+∑j,k[∂l(c(ej)λ2ɛ(v*)+λ1l(v)c(ej))]×〈ej,dxk〉∂k+∑j,k(c(ej)λ2ɛ(v*)+λ1l(v)c(ej))[∂l〈ej,dxk〉]∂k}+[(σi+ai)+λ2ɛ(v*)](-gij∂i∂j)+∑i=1nc(ei)〈ei,dxl〉{2∑j,k(c(ej)λ2ɛ(v*)+λ1l(v)c(ej))×〈ei˜,dxk〉}∂l∂k+[(σi+ai)+λ2ɛ(v*)]{-∑i,jgi,j[2σi∂j+2ai∂j-Γi,jk∂k+(∂iσj)+14s+(∂iaj)+σiσj+σiaj+aiσj+aiaj-Γi,jkσk-Γi,jkak]+∑i,jgi,j(c(ej)λ2ɛ(v*)+λ1l(v)c(ej))∂j+∑i,jgi,j[λ1l(v)c(∂i)σi+λ1l(v)c(∂i)ai+c(∂i)λ2∂i(ɛ(v*))+c(∂i)σiλ2ɛ(v*)+c(∂i)aiλ2ɛ(v*)]+λ1λ2l(v)ɛ(v*)-18∑ijklRijklc¯(ei)c¯(ej)c(ek)c(el)}.
(4.4)
Then, we obtain
Lemma 4.1.
The following identities hold:
σ2(D2*D1D2*)=∑i,j,lc(dxl)∂l(gi,j)ξiξj+c(ξ)(4σk+4ak-2Γk)ξk-2[λ1c(ξ)l(v)c(ξ) -|ξ|2λ2ɛ(v*)]+14|ξ|2∑s,t,lωs,t(el)[c(el)c¯(es)c¯(et)-c(el)c(es)c(et)]+|ξ|2λ2ɛ(v*);σ3(D2*D1D2*)=ic(ξ)|ξ|2.
(4.5)
Write
σ(D2*D1D2*)=p3+p2+p1+p0; σ((D2*D1D2*)-1)=∑j=3∞q-j.
(4.6)
By the composition formula of pseudodifferential operators, we have
1=σ((D2*D1D2*)∘(D2*D1D2*)-1)=∑α1α!∂ξα[σ(D2*D1D2*)]Dxα[(D2*D1D2*)-1]=(p3+p2+p1+p0)(q-3+q-4+q-5+⋯) +∑j(∂ξjp3+∂ξjp2+∂ξjp1+∂ξjp0)(Dxjq-3+Dxjq-4+Dxjq-5+⋯)=p3q-3+(p3q-4+p2q-3+∑j∂ξjp3Dxjq-3)+⋯,
(4.7)
by
(4.7), we have
q-3=p3-1; q-4=-p3-1[p2p3-1+∑j∂ξjp3Dxj(p3-1)].
(4.8)
By Lemma 4.1, we have some symbols of operators.
Lemma 4.2.
The following identities hold:
σ-3((D2*D1D2*)-1)=ic(ξ)|ξ|4;σ-4((D2*D1D2*)-1)=c(ξ)σ2(D2*D1D2*)c(ξ)|ξ|8+ic(ξ)|ξ|8(|ξ|4c(dxn)∂xnc(ξ′)-2h′(0)c(dxn)c(ξ)+2ξnc(ξ)∂xnc(ξ′)+4ξnh′(0)).
(4.9)
In the normal coordinate, gij(x0)=δij and ∂xj(gαβ)(x0)=0, if j < n; ∂xj(gαβ)(x0)=h′(0)δβα, if j = n. So by Lemma A.2 in [15], we have Γn(x0)=52h′(0) and Γk(x0) = 0 for k < n. By the definition of δk and Lemma 2.3 in [15], we have δn(x0) = 0 and δk=14h′(0)c(ek)c(en) for k < n. By Lemma 4.2, we obtain
σ-4((D2*D1D2*)-1)(x0)||ξ′|=1=c(ξ)σ2((D2*D1D2*)-1)(x0)||ξ′|=1c(ξ)|ξ|8-c(ξ)|ξ|4∑j∂ξj(c(ξ)|ξ|2)Dxj(ic(ξ)|ξ|4)=1|ξ|8c(ξ)(12h′(0)c(ξ)∑k<nξkc(ek)c(en)-12h′(0)c(ξ)∑k<nξkc¯(ek)c¯(en)-52h′(0)ξnc(ξ) -14h′(0)|ξ|2c(dxn)-2[c(ξ)λ1l(v)c(ξ)-|ξ|2λ2ɛ(v*)]+|ξ|2λ2ɛ(v*))c(ξ) +ic(ξ)|ξ|8(|ξ|4c(dxn)∂xnc(ξ′)-2h′(0)c(dxn)c(ξ)+2ξnc(ξ)∂xnc(ξ′)+4ξnh′(0)).
(4.10)
From the remark above, now we can compute Ψ (see formula (4.2) for the definition of Ψ). We use tr as shorthand of trace. Since n = 6, tr∧∗ T∗M[id]= 64. Since the sum is taken over r + ℓ − k − j − |α|− 1 = −6, r ≤ −1, ℓ ≤ −3, we have the ∫∂M Ψ is the sum of the following five cases:
case (a) (I) r = −1, l = −3, j = k = 0, |α|= 1.
By (4.2), we get
case (a) (I)=-∫|ξ′|=1∫-∞+∞∑|α|=1tr[∂ξ′απξn+σ-1(D1-1)×∂x′α∂ξnσ-3((D2*D1D2*)-1)](x0)dξnσ(ξ′)dx′.
(4.11)
By Lemma 4.2, for i < n, we have
∂xiσ-3((D2*D1D2*)-1)(x0)=∂xi[ic(ξ)|ξ|4](x0)=i∂xi[c(ξ)]|ξ|-4(x0)-2ic(ξ)∂xi[|ξ|2]|ξ|-6(x0)=0.
(4.12)
so case (a) (I) vanishes.
case (a) (II) r = −1, l = −3, |α|= k = 0, j = 1.
By (4.2), we have
case (a) (II)=-12∫|ξ′|=1∫-∞+∞tr[∂xnπξn+σ-1(D1-1)×∂ξn2σ-3((D2*D1D2*)-1)](x0)dξnσ(ξ′)dx′.
(4.13)
By Lemma 4.2 and direct calculations, we have
∂ξn2σ-3((D2*D1D2*)-1)=i[(20ξn2-4)c(ξ′)+12(ξn3-ξn)c(dxn)(1+ξn2)4].
(4.14)
Since n = 6, tr[−id]= −64. By the relation of the Clifford action and trAB = trBA, then
tr[c(ξ′)c(dxn)]=0;tr[c(dxn)2]=-64;tr[c(ξ′)2](x0)||ξ′|=1=-64;tr[∂xn[c(ξ′)]c(dxn)]=0;tr[∂xnc(ξ′)c(ξ′)](x0)||ξ′|=1=-32h′(0).
(4.15)
By (3.31), (4.14) and (4.15), we get
tr[∂xnπξn+σ-1(D1-1)×∂ξn2σ-3((D2*D1D2*)-1)](x0)=64h′(0)-1-3ξni+5ξn2+3iξn3(ξn-i)6(ξn+i)4.
(4.16)
Then we obtain
case (a) (II)=-12∫|ξ′|=1∫-∞+∞h′(0)-8-24ξni+40ξn2+24iξn3(ξn-i)6(ξn+i)4dξnσ(ξ′)dx′=-152πh′(0)Ω4dx′,
(4.17)
where Ω
4 is the canonical volume of
S4.
case (a) (III) r = −1, l = −3, |α|= j = 0, k = 1.
By (4.2), we have
case (a) (III)=-12∫|ξ′|=1∫-∞+∞tr[∂ξnπξn+σ-1(D1-1)×∂ξn∂xnσ-3((D2*D1D2*)-1)](x0)dξnσ(ξ′)dx′.
(4.18)
By Lemma 4.2 and direct calculations, we have
∂ξn∂xnσ-3((D2*D1D2*)-1)=-4iξn∂xnc(ξ′)(x0)(1+ξn2)3+i12h′(0)ξnc(ξ′)(1+ξn2)4-i(2-10ξn2)h′(0)c(dxn)(1+ξn2)4.
(4.19)
Combining (3.31) and (4.19), we have
tr[∂ξnπξn+σ-1(D1-1)×∂ξn∂xnσ-3((D2*D1D2*)-1)](x0)||ξ′|=1=8h′(0)8i-32ξn-8iξn2(ξn-i)5(ξ+i)4.
(4.20)
Then
case (a) III)=-12∫|ξ′|=1∫-∞+∞8h′(0)8i-32ξn-8iξn2(ξn-i)5(ξ+i)4dξnσ(ξ′)dx′=252πh′(0)Ω4dx′.
(4.21)
case (b) r = −1, l = −4, |α|= j = k = 0.
By (4.2), we have
case (b)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1(D1-1)×∂ξnσ-4((D2*D1D2*)-1)](x0)dξnσ(ξ′)dx′=i∫|ξ′|=1∫-∞+∞tr[∂ξnπξn+σ-1(D1-1)×σ-4((D2*D1D2*)-1)](x0)dξnσ(ξ′)dx′.
(4.22)
By (3.31) and (4.23), we have
tr[∂ξnπξn+σ-1(D1-1)×σ-4(D2*D1D2*)-1](x0)||ξ′|=1 =12(ξn-i)2(1+ξn2)4(34i+2+(3+4i)ξn+(-6+2i)ξn2+3ξn3+9i4ξn4)h′(0)tr[id] +12(ξn-i)2(1+ξn2)4(-1-3iξn-2ξn2-4iξn3-ξn4-iξn5)tr[c(ξ′)∂xnc(ξ′)] -12(ξn-i)2(1+ξn2)4(12i+12ξn+12ξn2+12ξn3)tr[c(ξ′)c¯(ξ′)c(dxn)c¯(dxn)] +tr[πξn+σ-1(D1-1)×∂ξn(3c(ξ)λ2ɛ(v*)c(ξ)|ξ|6-2λ1l(v)|ξ|4)](x0)||ξ′|=1
(4.23)
By direct calculations, we have
tr[πξn+σ-1(D1-1)×∂ξn(3c(ξ)λ2ɛ(v*)c(ξ)|ξ|6-2λ1l(v)|ξ|4)](x0)||ξ′|=1 =3(4iξn+2)i2(ξn+i)(1+ξn2)3tr[λ2ɛ(v*)c(ξ′)]+3(4iξn+2)2(ξn+i)(1+ξn2)3tr[λ2ɛ(v*)c(dxn)] +4ξn2(ξn-i)(1+ξn2)3tr[λ1l(v)c(ξ′)]+4ξni2(ξn-i)(1+ξn2)3tr[λ1l(v)c(dxn)].
(4.24)
By the relation of the Clifford action and trAB = trBA, then we have the following equalities:
tr[c(dxn)l(v)]=32〈dxn,v〉; tr[c(ξ′)l(v)]=32〈ξ′,v〉;tr[c(dxn)ɛ(v*)]=-32〈v*,∂∂xn〉; tr[c(ξ′)ɛ(v*)]=-32〈v*,g(ξ′,⋅)〉;tr[c(ei)c¯(ei)c(en)c¯(en)]=0 (i<n).
(4.25)
So
tr[c(ξ′)c¯(ξ′)c(dxn)c¯(dxn)]=∑i<n,j<ntr[ξiξjc(ei)c¯(ej)c(dxn)c¯(dxn)]=0.
(4.26)
By (4.25), then we have
case (b)=ih′(0)∫|ξ′|=1∫-∞+∞64×34i+2+(3+4i)ξn+(-6+2i)ξn2+3ξn3+9i4ξn42(ξn-i)5(ξn+i)4dξnσ(ξ′)dx′ +ih′(0)∫|ξ′|=1∫-∞+∞32×1+3iξn+2ξn2+4iξn3+ξn4+iξn52(ξn-i)2(1+ξn2)4dξnσ(ξ′)dx′ -i∫|ξ′|=1∫-∞+∞tr[πξn+σ-1(D1-1)×∂ξn(3c(ξ)λ2ɛ(v*)c(ξ)|ξ|6-2λ1l(v)|ξ|4)](x0)||ξ′|=1dξnσ(ξ′)dx′=(-418i-1958)πh′(0)Ω4dx′+(4λ1+18λ2)π〈dxn,v〉Ω4dx′.
(4.27)
case (c) r = −2, l = −3, |α|= j = k = 0.
By (4.2), we have
case (c)=-i∫|ξ′|=1∫-∞+∞tr[πξn+σ-2(D1-1)×∂ξnσ-3((D2*D1D2*)-1)](x0)dξnσ(ξ′)dx′.
(4.28)
By (3.36) and (3.37), we have
πξn+σ-2(D1-1(x0))||ξ′|=1=πξn+[c(ξ)A(x0)c(ξ)(1+ξn2)2]+πξn+[c(ξ)(λ1l(v)(x0))c(ξ)(1+ξn2)2] +πξn+[c(ξ)B(x0)c(ξ)+c(ξ)c(dxn)∂xn[c(ξ′)](x0)(1+ξn2)2-h′(0)c(ξ)c(dxn)c(ξ)(1+ξn2)3].
(4.29)
By (3.40), we have
πξn+[c(ξ)A(x0)c(ξ)(1+ξn2)2]=-c(ξ′)A(x0)c(ξ′)(2+iξn)4(ξn-i)2+ic(ξ′)A(x0)c(dxn)4(ξn-i)2+ic(dxn)A(x0)c(ξ′)4(ξn-i)2+-iξnc(dxn)A(x0)c(dxn)4(ξn-i)2.
(4.30)
By (3.45)-(3.47), we have
πξn+[c(ξ)B(x0)c(ξ)+c(ξ)c(dxn)∂xn[c(ξ′)](x0)(1+ξn2)2]-h′(0)πξn+[c(ξ)c(dxn)c(ξ)(1+ξn)3]≔P1-P2,
(4.31)
where
P1=-14(ξn-i)2[(2+iξn)c(ξ′)b02(x0)c(ξ′)+iξnc(dxn)b02(x0)c(dxn) +(2+iξn)c(ξ′)c(dxn)∂xnc(ξ′)+ic(dxn)b02(x0)c(ξ′)+ic(ξ′)b02(x0)c(dxn)-i∂xnc(ξ′)]
(4.32)
and
P2=h′(0)2[c(dxn)4i(ξn-i)+c(dxn)-ic(ξ′)8(ξn-i)2+3ξn-7i8(ξn-i)3[ic(ξ′)-c(dxn)]].
(4.33)
Similar to (4.30), we have
πξn+[c(ξ)(l(v)(x0))c(ξ)(1+ξn2)2]=-c(ξ′)(l(v)(x0))c(ξ′)(2+iξn)4(ξn-i)2+ic(ξ′)(l(v)(x0))c(dxn)4(ξn-i)2+ic(dxn)(l(v)(x0))c(ξ′)4(ξn-i)2 +-iξnc(dxn)(l(v)(x0))c(dxn)4(ξn-i)2.
(4.34)
On the other hand,
∂ξnσ-3((D2*D1D2*)-1)=-4iξnc(ξ′)(1+ξn2)3+i(1-3ξn2)c(dxn)(1+ξn2)3.
(4.35)
By the relation of the Clifford action and trAB = trBA, then we have equalities:
tr[Ac(dxn)]=0; tr[c¯(ξ′)c¯(dxn)]=0.
(4.36)
Then we have
tr[πξn+(c(ξ)A(x0)c(ξ)(1+ξn2)2)×∂ξnσ-3((D2*D1D2*)-1)(x0)]||ξ′|=1=2-8iξn-6ξn24(ξn-i)2(1+ξn2)3tr[A(x0)c(ξ′)],
(4.37)
We note that i < n, ∫|ξ′|=1{ξi1 ξi2 ··· ξi2d+1}σ(ξ′) = 0, so tr[A(x0)c(ξ′)] has no contribution for computing case c).
By (4.32) and (4.35), we have
tr[P1×∂ξnσ-3((D2*D1D2*)-1)(x0)]||ξ′|=1 =tr{14(ξn-i)2[52h′(0)c(dxn)-5i2h′(0)c(ξ′)-(2+iξn)c(ξ′)c(dxn)∂ξnc(ξ′)+i∂ξnc(ξ′)] ×-4iξnc(ξ′)+(i-3iξn2)c(dxn)(1+ξn2)3} =8h′(0)3+12iξn+3ξn2(ξn-i)4(ξn+i)3.
(4.38)
By (4.33) and (4.35), we have
tr[P2×∂ξnσ-3((D2*D1D2*)-1)(x0)]||ξ′|=1 =tr{h′(0)2[c(dxn)4i(ξn-i)+c(dxn)-ic(ξ′)8(ξn-i)2+3ξn-7i8(ξn-i)3[ic(ξ′)-c(dxn)]]×-4iξnc(ξ′)+(i-3iξn2)c(dxn)(1+ξn2)3} =8h′(0)4i-11ξn-6iξn2+3ξn3(ξn-i)5(ξn+i)3.
(4.39)
By (4.34) and (4.35), we have
tr[πξn+(c(ξ)[λ1l(v)(x0)]c(ξ)(1+ξn2)2)×∂ξnσ-3((D2*D1D2*)-1)(x0)]||ξ′|=1 =-2-8iξn+6ξn24(ξn-i)2(1+ξn2)3tr[λ1l(v)(x0)c(ξ′)]+-2i+8ξn+6iξn24(ξn-i)2(1+ξn2)3tr[λ1c(dxn)l(v)(x0)].
(4.40)
By (4.25), we have
case (c)=-ih′(0)∫|ξ′|=1∫-∞+∞8×-7i+26ξn+15iξn2(ξn-i)5(ξn+i)3dξnσ(ξ′)dx′ -i∫|ξ′|=1∫-∞+∞tr[πξn+(c(ξ)[λ1l(v)(x0)]c(ξ)(1+ξn2)2)×∂ξnσ-3((D2*D1D2*)-1)(x0)]||ξ′|=1dξnσ(ξ′)dx′=-8ih′(0)×2πi4![-7i+26ξn+15iξn2(ξn+i)3](5)|ξn=iΩ4dx′+(9πi-4π)(λ1〈dxn,v〉-iλ1〈ξ′,v〉)Ω4dx′=[552πh′(0)+(9πi-4π)λ1〈dxn,v〉]Ω4dx′.
(4.41)
Since Ψ is the sum of the cases a), b) and c),
Ψ=(65-41i)πh′(0)8Ω4dx′+(18πλ2+9λ1πi)〈dxn,v〉Ω4dx′.
Theorem 4.3.
Let M be a 6-dimensional compact oriented manifold with the boundary ∂M and the metric gM as above, Di and Di* (i=1,2) be statistical de Rham Hodge Operators on M^, then
Wres˜[π+D1-1∘π+(D2*D1D2*)-1]=128π3∫M[-163s-8(λ12+λ22-8λ1λ2)|v|2+12tr[λ2∇ejTM(ɛ(v*))c(ej) -λ1c(ej)∇ejTM(l(v))]]dVolM+∫∂M[(65-41i)πh′(0)8Ω4dx′ +(18πλ2+9λ1πi)〈dxn,v〉]Ω4dx′,
(4.42)
where s is the scalar curvature.
Corollary 4.4.
When λ1 = λ2 = 1, we get for a 6-dimensional oriented compact manifold M with the boundary ∂M
Wres˜[π+D-1∘π+(D*DD*)-1]=128π3∫M[-163s+48|v|2+12tr[∇ejTM(ɛ(v*))c(ej)-c(ej)∇ejTM(l(v))]]dVolM +∫∂M((65-41i)πh′(0)8Ω4dx′+(18π+9πi)〉〈dxn,v〉Ω4dx′),
where s is the scalar curvature.