Journal of Nonlinear Mathematical Physics

Volume 18, Issue Supplement 1, September 2011, Pages 51 - 60

Classical Lie Symmetries and Reductions of a Nonisospectral Lax Pair

Authors
P. G. Estévez
Departamento de Fisica Fundamental, Universidad de Salamanca, Spain,pilar@usal.es
M. L. Gandarias
Departamento de Matematicas, Universidad de Cádiz, Spain
J. Lucas
Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland
Received 20 September 2010, Accepted 12 November 2010, Available Online 7 January 2021.
DOI
10.1142/S1402925111001271How to use a DOI?
Keywords
Lie symmetries; similarity reductions; problems
Abstract

The classical Lie method is applied to a nonisospectral problem associated with a system of partial differential equations in 2 + 1 dimensions (Maccari A, J. Math. Phys. 12 (1998) 6547–6551.). Identification of the classical Lie symmetries provides a set of reductions that give rise to different nontrivial spectral problems in 1 + 1 dimensions. The form in which the spectral parameter of the 1 + 1 Lax pair is introduced is carefully described.

Copyright
© 2011 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
18 - Supplement 1
Pages
51 - 60
Publication Date
2021/01/07
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1142/S1402925111001271How to use a DOI?
Copyright
© 2011 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - P. G. Estévez
AU  - M. L. Gandarias
AU  - J. Lucas
PY  - 2021
DA  - 2021/01/07
TI  - Classical Lie Symmetries and Reductions of a Nonisospectral Lax Pair
JO  - Journal of Nonlinear Mathematical Physics
SP  - 51
EP  - 60
VL  - 18
IS  - Supplement 1
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925111001271
DO  - 10.1142/S1402925111001271
ID  - Estévez2021
ER  -