Journal of Nonlinear Mathematical Physics

Volume 19, Issue Supplement 1, November 2012, Pages 161 - 178

Geometrical Methods for Equations of Hydrodynamical Type

Authors
Joachim Escher
Institute for Applied Mathematics, University of Hannover, D-30167 Hannover, Germany,escher@ifam.uni-hannover.de
Boris Kolev
LATP, CNRS & Aix-Marseille University, 39 Rue F. Joliot-Curie, 13453 Marseille Cedex 13, France,kolev@cmi.univ-mrs.fr
Received 23 May 2012, Accepted 22 June 2012, Available Online 28 November 2012.
DOI
10.1142/S140292511240013XHow to use a DOI?
Keywords
Euler equation; diffeomorphism group; fractional Sobolev metrics
Abstract

We describe some recent results for a class of nonlinear hydrodynamical approximation models where the geometric approach gives insight into a variety of aspects. The main contribution concerns analytical results for Euler equations on the diffeomorphism group of the circle for which the inertia operator is a nonlocal operator.

Copyright
© 2012 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
19 - Supplement 1
Pages
161 - 178
Publication Date
2012/11/28
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1142/S140292511240013XHow to use a DOI?
Copyright
© 2012 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Joachim Escher
AU  - Boris Kolev
PY  - 2012
DA  - 2012/11/28
TI  - Geometrical Methods for Equations of Hydrodynamical Type
JO  - Journal of Nonlinear Mathematical Physics
SP  - 161
EP  - 178
VL  - 19
IS  - Supplement 1
SN  - 1776-0852
UR  - https://doi.org/10.1142/S140292511240013X
DO  - 10.1142/S140292511240013X
ID  - Escher2012
ER  -