Journal of Nonlinear Mathematical Physics

Volume 19, Issue 3, September 2012, Pages 373 - 390

Geometry of the Recursion Operators for the GMV System

Authors
A. B. Yanovski
Department of Mathematics & Applied Mathematics, University of Cape Town, Rondebosch, Cape Town 7700, South Africa,Alexandar.Ianovsky@uct.ac.za
G. Vilasi
Dipartimento di Fisica, Università degli Studi di Salerno, INFN, Sezione di Napoli-GC Salerno, Via Ponte Don Melillo, Fisciano (Salerno) 84084, Italy,vilasi@sa.infn.it
Received 29 March 2012, Accepted 29 April 2012, Available Online 20 September 2012.
DOI
10.1142/S1402925112500234How to use a DOI?
Keywords
Lax representation; recursion operators; Nijenhuis tensors
Abstract

We consider the Recursion Operator approach to the soliton equations related to a auxiliary linear system introduced recently by Gerdjikov, Mikhailov and Valchev (GMV system) and their interpretation as dual of Nijenhuis tensors on the manifold of potentials.

Copyright
© 2012 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
19 - 3
Pages
373 - 390
Publication Date
2012/09/20
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1142/S1402925112500234How to use a DOI?
Copyright
© 2012 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - A. B. Yanovski
AU  - G. Vilasi
PY  - 2012
DA  - 2012/09/20
TI  - Geometry of the Recursion Operators for the GMV System
JO  - Journal of Nonlinear Mathematical Physics
SP  - 373
EP  - 390
VL  - 19
IS  - 3
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925112500234
DO  - 10.1142/S1402925112500234
ID  - Yanovski2012
ER  -