Journal of Nonlinear Mathematical Physics

Volume 24, Issue Supplement 1, December 2017, Pages 48 - 60

Classical Lie symmetries and reductions for a generalized NLS equation in 2+1 dimensions

Authors
P. Albares
Departamento de Física Fundamental, Universidad de Salamanca, Salamanca, Spain.paz.albares@usal.es
J. M. Conde
Universidad San Francisco de Quito (USFQ), Ecuador, Departamento de Matemáticas, Colegio de Ciencias e Ingenierias.jconde@usfq.edu.ec
P. G. Estévez
Departamento de Física Fundamental, Universidad de Salamanca, Salamanca, Spain,pilar@usal.es
Received 26 July 2017, Accepted 5 September 2017, Available Online 6 January 2021.
DOI
10.1080/14029251.2017.1418053How to use a DOI?
Keywords
Lie symmetries; similarity reductions; Lax pair
Abstract

A non-isospectral linear problem for an integrable 2+1 generalization of the non linear Schrödinger equation, which includes dispersive terms of third and fourth order, is presented. The classical symmetries of the Lax pair and the related reductions are carefully studied. We obtain several reductions of the Lax pair that yield in some cases non-isospectral problems in 1+1 dimensions.

Copyright
© 2017 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
24 - Supplement 1
Pages
48 - 60
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2017.1418053How to use a DOI?
Copyright
© 2017 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - P. Albares
AU  - J. M. Conde
AU  - P. G. Estévez
PY  - 2021
DA  - 2021/01/06
TI  - Classical Lie symmetries and reductions for a generalized NLS equation in 2+1 dimensions
JO  - Journal of Nonlinear Mathematical Physics
SP  - 48
EP  - 60
VL  - 24
IS  - Supplement 1
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2017.1418053
DO  - 10.1080/14029251.2017.1418053
ID  - Albares2021
ER  -