Volume 24, Issue Supplement 1, December 2017, Pages 48 - 60
Classical Lie symmetries and reductions for a generalized NLS equation in 2+1 dimensions
Authors
P. Albares
Departamento de Física Fundamental, Universidad de Salamanca, Salamanca, Spain.paz.albares@usal.es
J. M. Conde
Universidad San Francisco de Quito (USFQ), Ecuador, Departamento de Matemáticas, Colegio de Ciencias e Ingenierias.jconde@usfq.edu.ec
P. G. Estévez
Departamento de Física Fundamental, Universidad de Salamanca, Salamanca, Spain,pilar@usal.es
Received 26 July 2017, Accepted 5 September 2017, Available Online 6 January 2021.
- DOI
- 10.1080/14029251.2017.1418053How to use a DOI?
- Keywords
- Lie symmetries; similarity reductions; Lax pair
- Abstract
A non-isospectral linear problem for an integrable 2+1 generalization of the non linear Schrödinger equation, which includes dispersive terms of third and fourth order, is presented. The classical symmetries of the Lax pair and the related reductions are carefully studied. We obtain several reductions of the Lax pair that yield in some cases non-isospectral problems in 1+1 dimensions.
- Copyright
- © 2017 The Authors. Published by Atlantis Press and Taylor & Francis
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - P. Albares AU - J. M. Conde AU - P. G. Estévez PY - 2021 DA - 2021/01/06 TI - Classical Lie symmetries and reductions for a generalized NLS equation in 2+1 dimensions JO - Journal of Nonlinear Mathematical Physics SP - 48 EP - 60 VL - 24 IS - Supplement 1 SN - 1776-0852 UR - https://doi.org/10.1080/14029251.2017.1418053 DO - 10.1080/14029251.2017.1418053 ID - Albares2021 ER -