Journal of Nonlinear Mathematical Physics

Volume 24, Issue Supplement 1, December 2017, Pages 146 - 156

The nonlinear pendulum always oscillates

Authors
M. C. Nucci
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, & INFN Sezione di Perugia, 06123 Perugia, Italy,mariaclara.nucci@unipg.it
Received 27 August 2017, Accepted 17 November 2017, Available Online 6 January 2021.
DOI
10.1080/14029251.2017.1418059How to use a DOI?
Keywords
Lie and Noether symmetries; Jacobi last multiplier; Lagrangians; quantization
Abstract

It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.

Copyright
© 2017 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
24 - Supplement 1
Pages
146 - 156
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2017.1418059How to use a DOI?
Copyright
© 2017 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - M. C. Nucci
PY  - 2021
DA  - 2021/01/06
TI  - The nonlinear pendulum always oscillates
JO  - Journal of Nonlinear Mathematical Physics
SP  - 146
EP  - 156
VL  - 24
IS  - Supplement 1
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2017.1418059
DO  - 10.1080/14029251.2017.1418059
ID  - Nucci2021
ER  -