Volume 24, Issue Supplement 1, December 2017, Pages 146 - 156
The nonlinear pendulum always oscillates
Authors
M. C. Nucci
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, & INFN Sezione di Perugia, 06123 Perugia, Italy,mariaclara.nucci@unipg.it
Received 27 August 2017, Accepted 17 November 2017, Available Online 6 January 2021.
- DOI
- 10.1080/14029251.2017.1418059How to use a DOI?
- Keywords
- Lie and Noether symmetries; Jacobi last multiplier; Lagrangians; quantization
- Abstract
It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.
- Copyright
- © 2017 The Authors. Published by Atlantis Press and Taylor & Francis
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - M. C. Nucci PY - 2021 DA - 2021/01/06 TI - The nonlinear pendulum always oscillates JO - Journal of Nonlinear Mathematical Physics SP - 146 EP - 156 VL - 24 IS - Supplement 1 SN - 1776-0852 UR - https://doi.org/10.1080/14029251.2017.1418059 DO - 10.1080/14029251.2017.1418059 ID - Nucci2021 ER -