Journal of Nonlinear Mathematical Physics

Volume 25, Issue 4, July 2018, Pages 509 - 514

On a surface isolated by Gambier

Authors
Runliang Lin
Department of mathematical sciences, Tsinghua University, Beijing 100084, P.R. China,RLin@mail.tsinghua.edu.cn
Robert Conte
1Centre de mathématiques et de leurs applications, École normale supérieure de Cachan, CNRS, Université Paris-Saclay, 61, avenue du Président Wilson, F–94235 Cachan, France
2Department of mathematics, The University of Hong Kong, Pokfulam Road, Hong KongRobert.Conte@cea.fr
Received 21 November 2017, Accepted 6 May 2018, Available Online 6 January 2021.
DOI
10.1080/14029251.2018.1503393How to use a DOI?
Keywords
Surfaces of Voss and Guichard; Lax pair; Painlevé III
Abstract

We provide a Lax pair for the surfaces of Voss and Guichard, and we show that such particular surfaces considered by Gambier are characterized by a third Painlevé function.

Copyright
© 2018 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction. Surfaces of Voss and Guichard

Let us first recall two equivalent definitions of these surfaces: a geometric one and an analytic one. Our notation follows the review of Gambier [4].

Geometrically, the surfaces of Voss [11] and Guichard [6] are by definition those which admit a conjugate net made of geodesics. For instance, every minimal surface is such a surface.

Analytically, they can be characterized by their three fundamental quadratic forms dF.dF, −dF.dN, dN. dN in which F(u, v) is the current point of the surface and N(u, v) a unit vector normal to the tangent plane. Choosing the coordinates (u, v) defined by the geodesic conjugate net, these are [4, p. 362]

{I=Xu2 du2+2cos(2ω)XuYv du dv+Yv2 dv2,II=sin(2ω)(Xu du2+Yv dv2),III=du2+2cos(2ω)du dv+dv2,(1.1)
with the notation Xu = ∂X(u,v) / ∂u, . . . , they depend on three functions ω, X, Y of two variables, and 2ω is the angle between the two conjugate geodesics. It is remarkable that, among the three Gauss-Codazzi equations [4, p. 362]
{ωuv12sin(2ω)=0,Xvcos(2ω)Yv=0,Yucos(2ω)Xu=0,(1.2)
the first one characterizes the surfaces with a constant total (Gauss) curvature.

2. Their Lax pair

Gambier succeeded in introducing a deformation parameter λ, thus upgrading the moving frame equations to a Lax pair, but he did not write this Lax pair explicitly, so let us do it here.

The moving frame equations (Gauss-Weingarten equations) only depend on the coefficients of the first and second fundamental forms, and the spectral parameter is introduced, as in the case of surfaces with a constant mean curvature, by noticing the invariance of the Gauss-Codazzi equations (1.2) under the scaling transformation (u, v)→( λu, λ−1v). The traceless Lax pair is

uψ=Lψ,vψ=Mψ,(2.1)
L=(2Xuu3Xu+2Xu3Xvcotg(2ω)ωv0Yutg(2ω)2Yvλ2Yucotg(2ω)ωuXuu3Xu4Xu3Xvcotg(2ω)ωv01λ2Yucotg(2ω)1Yvcotg(2ω)Xuu3Xu+2Xu3Xvcotg(2ω)ωv),(2.2)
M=(Yvv3Yv4Yv3Yucotg(2ω)ωu2λ2XuXvcotg(2ω)ωv002Yvv3Yv+2Yv3Yucotg(2ω)ωuXvtg(2ω)1Xucotg(2ω)λ2Xvcotg(2ω)Yvv3Yv+2Yv3Yucotg(2ω)ωu),(2.3)
with the zero-curvature condition,
[uL,vM]=(FE1EE1(EGF2)E2GE1FE1(EGF2)E3GE2FE3FE2+EE30)=0,(2.4)
denoting Ej, j = 1; 2; 3 the lhs of (1.2), and E, F, G the coefficients of the first fundamental form,
E=Xu2,  F=XuYvcos(2ω),  G=Yv2.(2.5)

3. Surfaces applicable on a surface of revolution

Gambier [3, p. 99] investigated surfaces whose first fundamental form I, Eq. (1.1), has coefficients Xu, Yv, ω only depending on the single variable x = u + v. Denoting for shortness Xu = ξ, Yv = η, he first obtains

dX=ξdu+(ξ+2C1)dv, dY=(η+2C2)du+ηdv,ξ+2C1=ηcos(2ω),η+2C2=ξcos(2ω),(3.1)
with C1, C2 two integration constants. After a possible conformal transformation, this defines two reductions of the Gauss-Codazzi equations, either
d2ωdx2=m22sin(2ω),m= arbitrary constant, (3.2)
or
d2ωdx2=ex2sin(2ω)(3.3)

The first reduction (3.2) integrates with elliptic functions and is handled in full detail by Gambier [3, pp. 100–105].

As to the second reduction (3.3), Gambier unexpectedly fails to integrate it. This ordinary differential equation (ODE) belongs to the class of second order first degree ODEs

d2u dx2+j=03Aj(x,u)(du dx)j=0,(3.4)
whose property is to be form-invariant under the group of point transformations
(u,x)(U,X): u=φ(X,U), x=ψ(X,U), U=Φ(x,u), X=Ψ(x,u).(3.5)
Roger Liouville [7] enumerated equivalence classes of (3.4) modulo the group (3.5) but, as later pointed out by Babich and Bordag [1], he forgot the important class, to which the ODE (3.3) belongs, when the invariants which he denotes v5 and w1 both vanish.

When v5 and w1 both vanish, the coefficients A3, A2, A1 in the class (3.4) can be set to zero by a transformation (3.5), thus defining the five remarkable four-parameter nonautonomous ODEs

d2U dX2=(2ω)3π2j=,0,1,xθj2(2ωU+ωj,g2,g3),d2U dX2=2αcoshUsinh3U2βsinhUcosh3U2γe2Xsinh(2U)12δe4Xsinh(4U),d2U dX2=12eX(αe2U+βe2U)+12e2X(γe4U+δe4U),d2U dX2=αU+β2U3+γ(34U5+2XU3+X2U)+2δ(U3+XU),d2U dX2=δ(2U3+XU)+γ(6U2+X)+βU+α,
in which the summation in the first equation runs over the four half-periods ωj of the Weierstrass elliptic function .

The third one is precisely, up to rescaling, the ODE (3.3) isolated by Gambier, and the main result of Ref. [1] is the existence of a point transformation mapping these five four-parameter ODEs to the representation of the Painlevé equations chosen by Garnier [5],[2] (i.e. five equations with four parameters, the last one unifying PII and PI),

PV1:u=12[1u+1u1+1ux]u2[1x+1x1+1ux]u+u(u1)(ux)x2(x1)2[α+βxu2+γx1(u1)2+δx(x1)(ux)2],PV:u=[12u+1u1]u2ux+(u1)2x2[αu+βu]+γux+δu(u+1)u1,PIII:u=u2uux+αu2+γu34x2+β4x+δ4u,PIV:u=u22u+γ(32u3+4xu2+2x2u)+4δ(u2+xu)2αu+βu,PII:u=δ(2u3+xu)+γ(6u2+x)+βu+α.(3.6)
The point transformations which realize this mapping are, respectively,
x=e3e1e2e1,u=(2ωU,g2,g3)e1e2e1,x=e2X,u=coth2U,x=e2X,u=eXe2U,x=X,u=U2,x=X,u=U.

Therefore the mapping between the ODE (3.3) for ω(x) and the third Painlevé equation (3.6) for u(ξ) is either

e2iω=2αexu, ξ=14αβe2x,αβ0,γ=0,δ=0,(3.7)
or equivalently
e2iω=γexu2, ξ=1γδex,α=0, β=0, γδ0.(3.8)

As is well known, the third Painlevé equation has three kinds of solutions:

  1. (i)

    two-parameter transcendental solutions, which is the generic case, and one cannot proceed beyond the description of Gambier [3, pp. 105–106];

  2. (ii)

    one-parameter Riccati-type solutions, but for our case γδ ≠ 0 this does not happen;

  3. (iii)

    zero-parameter rationala solutions, the only ones being, with the choice (3.7),

    u=(βα)1/2ξ1/2, γ=0, δ=0,(3.9)
    or equivalently with the choice (3.8),
    u=(δγ)1/4ξ1/2, α=0, β=0.(3.10)

However, these rational solutions correspond to sin (2ω) = 0, forbidden because the second fundamental form would vanish. Consequently, all solutions of (3.3) are transcendental.

4. Future developments

The equation (1.2)1 for constant total curvature surfaces (sine-Gordon equation) possesses many closed form solutions which obey neither (3.2) nor (3.3), for instance the factorized solution [10]

tgω2=J1(u+v)J2(uv),(4.1)
in which J1 and J2 are Jacobi elliptic functions, a degeneracy of which is
tgω2=sink(u+v)sink(uv),(4.2)
or the N -soliton solution [9], which depends on 2N arbitrary constants. The difficulty to build Voss-Guichard surfaces from such solutions is the integration of the linear system (1.2)2,3 for X(u, v) and Y(u, v).

Another useful development would be to find a Darboux transformation for the system (1.2).

Acknowledgments

This work was partially funded by the National Natural Science Foundation of China grant 11471182, and the Hong Kong GRF grant HKU 703313P and GRF grant 17301115. The second author also thanks the Institute of Mathematical Research (IMR), HKU for the financial support of his visit to IMR in November, 2017.

Footnotes

a

Algebraic solutions of (3.6) [8] are in fact rational solutions for another representative of PIII in its equivalence class under (u, x) → (g(x)u, f(x)), with f(x)=x, g(x) = 1. All algebraic solutions of Pn equations, n = 2, 3, 4, 5, are similarly rational.

References

[1]M.V. Babich and L.A. Bordag, Projective differential geometrical structure of the Painlevé equations, J. differential equations, Vol. 157, 1999, pp. 452-485. http://doi.org/10.1006/jdeq.1999.3628
[2]R. Conte and M. Musette, The Painlevé handbook, Springer, Berlin, 2008. Russian translation Ϻетод Пенлеве и его πриложения (Regular and chaotic dynamics, Moscow, 2011)
[4]B. Gambier, Surfaces de Voss-Guichard, Ann. Éc. Norm., Vol. 48, 1931, pp. 359-396. http://www.numdam.org/item?id=ASENS_1931_3_48359_0
[5]R. Garnier, Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Ann. Éc. Norm., Vol. 29, 1912, pp. 1-126. http://doi.org/10.24033/asens.644
[6]C. Guichard, Recherches sur les surfaces à courbure totale constante et sur certaines surfaces qui s’y rattachent, Ann. Éc. Norm., Vol. 7, 1890, pp. 233-264. http://archive.numdam.org/article/ASENS_1890_3_7233_0.pdf
[7]R. Liouville, Sur les invariants de certaines équations différentielles et sur leurs applications, Journal de l’École polytechnique, Vol. 59, 1889, pp. 7-76.
[10]R. Steuerwald, Über Enneper’sche Flächen und Bäcklund’sche Transformation, Abh. Bayer. Akad. Wiss. (München), Vol. 40, 1936, pp. 1-105.
[11]A. Voss, Über diejenigen Flächen, auf denen zwei Scharen geodätischer Linien ein conjugirtes System bilden, Sitzungsberichte der Königl, Bayerischen Akademie der Wissenschaften zu München, Vol. 18, 1888, pp. 95-102.
Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
25 - 4
Pages
509 - 514
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2018.1503393How to use a DOI?
Copyright
© 2018 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Runliang Lin
AU  - Robert Conte
PY  - 2021
DA  - 2021/01/06
TI  - On a surface isolated by Gambier
JO  - Journal of Nonlinear Mathematical Physics
SP  - 509
EP  - 514
VL  - 25
IS  - 4
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2018.1503393
DO  - 10.1080/14029251.2018.1503393
ID  - Lin2021
ER  -