Journal of Nonlinear Mathematical Physics

Volume 26, Issue 3, May 2019, Pages 404 - 419

Bilinear Identities and Squared Eigenfunction Symmetries of the BCr-KP Hierarchy

Authors
Lumin Geng, Huizhan Chen, Na Li, Jipeng Cheng*
School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China,genglumin@163.com;878056372@qq.com;2270798972@qq.com;chengjp@cumt.edu.cn.
*Corresponding author. Email:chengjp@cumt.edu.cn.
Corresponding Author
Jipeng Cheng
Received 16 December 2018, Accepted 6 March 2019, Available Online 6 January 2021.
DOI
10.1080/14029251.2019.1613049How to use a DOI?
Keywords
the BCr-KP hierarchy; the constrained BCr-KP hierarchy; bilinear identities; squared eigenfunction symmetries
Abstract

The BCr-KP hierarchy is an important sub hierarchy of the KP hierarchy, which includes the BKP and CKP hierarchies as the special cases. Some properties of the BCr-KP hierarchy and its constrained case are investigated in this paper, including bilinear identities and squared eigenfunction symmetries. We firstly discuss the bilinear identities of the BCr-KP hierarchy, and then generalize them into the constrained case. Next, we investigate the squared eigenfunction symmetries for the BCr-KP hierarchy and its constrained case, and also the connections with the additional symmetries. It is found that the constrained BCr-KP hierarchy can be defined by identifying the time flow with the squared eigenfunction symmetries.

Copyright
Β© 2019 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

In mathematical physics and integrable systems, the Kadomtsev-Petviashvili (KP) hierarchy [8,11] is an important research object. For the KP hierarchy, there is a kind of important sub hierarchy called the BCr-KP hierarchy [9,12,28], including the BKP and CKP hierarchies [3,8,9,19,21,28] as the special cases. The BCr-KP hierarchy is introduced in [9], then it is rewritten by Zuo et al in [28], and also is named by the BCr-KP hierarchy for brevity in [28]. Zuo et al. [28] construct additional symmetries of the BCr-KP hierarchy and its constrained case, which shows that all of them from a w∞BCr-algebra and a Witt algebra respectively. The gauge transformations of the BCr-KP hierarchy and its constrained cases are constructed, and the relations with the additional symmetries are investigated in [12]. In this paper, we continue to study the bilinear identities and squared eigenfunction symmetries of the BCr-KP hierarchy and its constrained case respectively.

Bilinear identity [7–9,11,20] is a bilinear residue identity for wave functions, which is an important equivalent form of the KP hierarchy. From the bilinear identity, one can know the whole information of the KP hierarchy. And the bilinear identity can provide a crucial role when discussing the existence of the tau functions [8, 11]. Also the Hirota’s bilinear equations [8] can be derived easily from the bilinear identity. By now, there are many results on bilinear identity. For example, the constrained KP hierarchy [7, 20], the constrained BKP hierarchy [25, 26] and the extended KP and BKP hierarchies [15, 16]. In this paper, we will consider the bilinear identity of the BCr-KP hierarchy. In fact, the BCr-KP hierarchy is equivalent to the sub hierarchy in [9], where the corresponding bilinear identities are discussed. But there are some differences in the expression forms between the BCr-KP hierarchy and the sub hierarchy in [9]. And also the bilinear identities in [9] are not discussed completely. Therefore, it will be important to find the bilinear identity of the BCr-KP hierarchy for itself. And what’s more, as far as we know, the bilinear identities for the constrained BCr-KP hierarchy have not discussed in literature.

The squared eigenfunction symmetry [2, 22–24], sometimes called the β€œghost” symmetry [2], plays an important symmetries in the integrable system. The squared eigenfunction symmetry can be traced back to [22], where Oevel studied the solutions of the constrained KP hierarchy in the first time. Then it is widely investigated in [4, 5, 13, 14]. The squared eigenfunction symmetry can be used to define the new integrable system, such as the extended integrable system [17,18] and the symmetry constraint [6,7,19–21,24–27] and the additional symmetry [1,2,10,28]. Recently, many researches have been done in the squared eigenfunction symmetries, for instance, the Toda lattice hierarchy and its sub hierarchy of B and C type [4, 5], the discrete KP [14] and modified discrete KP [13] hierarchies are investigated recently. In this paper, we will consider some properties of the squared eigenfunction symmetries of the BCr-KP hierarchy and its constrained case.

The structure of this paper is as follows. The backgrounds of the BCr-KP hierarchy will be reviewed in Section 2. In Section 3, we will study the bilinear identities of the BCr-KP and its constrained case. In Section 4, the squared eigenfunction symmetries associated with the BCr-KP and constrained BCr-KP hierarchy are constructed. In Section 5, some conclusions and discussions are given.

2. The BCr-KP Hierarchy

The BCr-KP hierarchy is the sub hierarchy of the KP hierarchy [9, 28], which is defined by the pseudo-differential operators. The algebra 𝔀 of the pseudo-differential operators [11] is given by

𝔀=(βˆ‘iβ‰ͺ∞uiβˆ‚xi),(2.1)
where ui = ui(t1 = x,t2,t3,...). The multiplication of βˆ‚xi with f obeys the Leibnitz rule [11]
βˆ‚xif=βˆ‘jβ‰₯0(ij)f(j)βˆ‚xiβˆ’j,   iβˆˆπ•‘.(2.2)

In this paper, for A=βˆ‘iaiβˆ‚xiβˆˆπ”€, we denote Resβˆ‚xA = aβˆ’1, Aβ‰₯k=βˆ‘iβ‰₯kaiβˆ‚xi and A<k=βˆ‘i<kaiβˆ‚xi, A+ = Aβ‰₯0, and Aβˆ’ = A<0. For A, B ∈ 𝔀 and a function f, * is the conjugate operation: (AB)* = B*A*, βˆ‚* = βˆ’βˆ‚, f* = f, and A f or AΒ· f indicates that the multiplication of A and f, while A(f) denotes the action of A on f .

Lemma 2.1 ([22]).

For arbitrary operator A ∈ 𝔀

Resβˆ‚xAβˆ‚xβˆ’1=A0,   Resβˆ‚xA=βˆ’Resβˆ‚xA*,(2.3)
(Aβ‰₯0βˆ‚xβˆ’1)<0=A0βˆ‚xβˆ’1,   (βˆ‚xβˆ’1Aβ‰₯0)<0=βˆ‚xβˆ’1(A*)0.(2.4)
where ( )0 denotes the zeroth-order term.

The KP hierarchy [9,28] is defined by

βˆ‚tnL=[Bn,L],   Bn=(Ln)β‰₯0,   n=1,2,3,….(2.5)

Here the Lax operator L ∈ 𝔀

L=βˆ‚x+u1βˆ‚xβˆ’1+u2βˆ‚xβˆ’2+u3βˆ‚xβˆ’3+β‹―.(2.6)

The Lax operator L for the KP hierarchy can be expressed by the dressing operator S,

L=Sβˆ‚xSβˆ’1,(2.7)
where S is given by
S=1+s1βˆ‚xβˆ’1+s2βˆ‚xβˆ’2+s3βˆ‚xβˆ’3+β‹―.(2.8)

Then the Lax equation Eq. (2.5) is equivalent to

βˆ‚tnS=βˆ’(Ln)<0S=βˆ’(Sβˆ‚nxSβˆ’1)<0S.(2.9)

The eigenfunction Ο• and the adjoint eigenfunction ψ of the KP hierarchy are defined by

βˆ‚tnΟ†=Bn(Ο†),β€‰β€‰β€‰βˆ‚tnψ=βˆ’Bn*(ψ),(2.10)
respectively. The wave and adjoint wave functions of the KP hierarchy are defined by the following way:
w(t,Ξ»)=S(eΞΎ(t,Ξ»))=(1+s1Ξ»βˆ’1+s2Ξ»βˆ’2+β‹―)eβˆ‘i=1∞tiΞ»i,(2.11)
w*(t,Ξ»)=(Sβˆ’1)*(eβˆ’ΞΎ(t,Ξ»))=(1+s1*Ξ»βˆ’1+s2*Ξ»βˆ’2+β‹―)eβˆ’βˆ‘i=1∞tiΞ»i,(2.12)
where Ξ» is the spectral parameter. And w and w* satisfy
Lnw(t,Ξ»)=Ξ»nw(t,Ξ»),β€‰β€‰β€‰βˆ‚tnw(t,Ξ»)=Bnw(t,Ξ»),(2.13)
(Ln)*w*(t,Ξ»)=Ξ»nw*(t,Ξ»),β€‰β€‰β€‰βˆ‚tnw*(t,Ξ»)=βˆ’Bn*w*(t,Ξ»).(2.14)

Next, we discuss the BCr-KP hierarchy. Define

Q=(Sβˆ’1)*βˆ‚rSβˆ’1,   rβˆˆπ•‘β‰₯0,(2.15)
where S is the dressing operator of the KP hierarchy. Obviously, Q is a r-order differential operator and has the properties:
Q*=(βˆ’1)rQ,   QL+L*Q=0,(2.16)
Qtn=(1+(βˆ’1)n)(Sβˆ’1)*βˆ‚xr+nSβˆ’1βˆ’QBnβˆ’Bn*Q.(2.17)

The BCr-KP hierarchy is defined by the following constraints,

Q=Q+.(2.18)

Therefore for the BCr-KP hierarchy, by taking the negative part of Eq. (2.17), one obtains 1 + (βˆ’1)n = 0, so there are only odd flows in the BCr-KP hierarchy, and the Lax equation of the BCr-KP hierarchy is given in the following way

βˆ‚t2n+1L=[B2n+1,L],   nβˆˆπ•‘β‰₯0,(2.19)

In particular,

  • BC0-KP is the CKP hierarchy: when r = 0, Q = 1, then L* = βˆ’L,

  • BC1-KP is the BKP hierarchy: when r = 1, Q = βˆ‚x, then L*=βˆ’βˆ‚xLβˆ‚βˆ’1x.

According to Eq. (2.10) and Eq. (2.17), the adjoint eigenfunction of the BCr-KP hierarchy can be expressed by Q(Ο•), where Ο• is eigenfunction. The constrained BCr-KP hierarchy is defined by imposing the below constraints on the Lax operator of the BCr-KP hierarchy

Lk=(Lk)β‰₯0+βˆ‘j=1m(q1jβˆ‚xβˆ’1β‹…Q(q2j)+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Q(q1j)),   k=1,3,…,(2.20)
where q1j and q2j are independent eigenfunctions of the BCr-KP hierarchy.

3. Bilinear Identities of the BCr-KP Hierarchy and its Constrained Case

Bilinear identity formulations of the BCr-KP hierarchy and its constrained case will be studied in this section. Before discussion, the following lemmas will be needed.

Lemma 3.1 ([11]).

For A, B ∈ 𝔀,

ResΞ»A(exΞ»)β‹…B(eβˆ’xΞ»)=Resβˆ‚xAB*,(3.1)
where B* is the adjoint operator of B.

Lemma 3.2.

If we let A(x)=βˆ‘iai(x)βˆ‚xi and B(xβ€²)=βˆ‘jbj(xβ€²)βˆ‚xβ€²j, be two operators, then

A(x)B*(x)βˆ‚x(Ξ”0)=ResΞ»A(x)(exΞ»)β‹…B(xβ€²)(eβˆ’xβ€²Ξ»),(3.2)
where Ξ”0 = (x βˆ’ xβ€²)0 and
βˆ‚xβˆ’a(Ξ”0)={0,a<0,(xβˆ’xβ€²)aa!,aβ‰₯0.(3.3)

Proof.

Firstly, by the formal expansion of B(xβ€²) at xβ€² = x and according to Lemma 3.1

ResΞ»A(x)(exΞ»)β‹…B(xβ€²)(eβˆ’xβ€²Ξ»)ResΞ»A(x)(exΞ»)βˆ‘n=0∞(xβ€²βˆ’x)nn!βˆ‚xnB(x)(eβˆ’xΞ»)=βˆ‘n=0∞(xβ€²βˆ’x)nn!Resβˆ‚xA(x)B*(x)(βˆ’1)nβˆ‚xn=βˆ‘n=0∞(xβˆ’xβ€²)nn!Resβˆ‚xA(x)B*(x)βˆ‚xn=βˆ‘n=0βˆžβˆ‚xβˆ’n(Ξ”0)Resβˆ‚xA(x)B*(x)βˆ‚xn.(3.4)

Then if set A(x)B*(x)=βˆ‘iβˆˆπ•‘ciβˆ‚xi and notice that

Resβˆ‚xA(x)B*(x)βˆ‚xn=Resβˆ‚xβˆ‘iβˆˆπ•‘ciβˆ‚xi+n=cβˆ’nβˆ’1,(3.5)
one can obtain
ResΞ»A(x)(exΞ»)B(xβ€²)(eβˆ’xβ€²Ξ»)=βˆ‘n=0∞cβˆ’nβˆ’1βˆ‚xβˆ’nΞ”0βˆ’nβˆ’1=i=βˆ‘kβˆˆπ•‘ciβˆ‚xi+1Ξ”0=A(x)B*(x)βˆ‚x(Ξ”0)(3.6)

Proposition 3.1.

The wave and adjoint wave functions of the BCr-KP hierarchy satisfy the bilinear identities

Resλλrw*(t,βˆ’Ξ»)w*(tβ€²,Ξ»)=0. (3.7)

Proof.

The wave and adjoint wave functions of the BCr-KP hierarchy satisfy the following bilinear identities

βˆ‚t2n+1w(x,tΒ―,Ξ»)=(Sβˆ‚x2n+1Sβˆ’1)β‰₯0(w(x,tΒ―,Ξ»)),β€‰β€‰β€‰βˆ‚t2n+1w*(x,tΒ―,Ξ»)=βˆ’(Sβˆ‚x2n+1Sβˆ’1)β‰₯0*(w*(x,tΒ―,Ξ»)),(3.8)
where tΒ―=(t3,t5,…). Therefore βˆ‚tΞ±w*(xβ€²,tΒ―,Ξ±) can be written in the following way
βˆ‚tΞ±w*(xβ€²,tΒ―,Ξ»)=PΞ±(xβ€²,tΒ―)(w*(xβ€²,tΒ―,Ξ»)),(3.9)
where βˆ‚tΞ±=∏n=1βˆžβˆ‚t2n+1Ξ±2n+1 and PΞ±(xβ€²,tΒ―)=βˆ‘iβ‰₯0aΞ±,i(xβ€²,tΒ―)βˆ‚xβ€²i, is a differential operator. Next by considering the formal expansion of w* with respect tΒ―β€² to at tΒ―
w*(xβ€²,tΒ―β€²,Ξ»)=βˆ‘Ξ±=(Ξ±3,Ξ±5,…)β‰₯0(tβ€²Β―βˆ’tΒ―)Ξ±Ξ±!βˆ‚tΞ±w*(xβ€²,tΒ―,Ξ»),(3.10)
with
(tβ€²Β―βˆ’tΒ―)Ξ±=∏n=1∞(t2n+1β€²βˆ’t2n+1)Ξ±2n+1,   α!=∏n=1∞α2n+1!,   αβ‰₯0   ⇔α2n+1β‰₯0,   n=1,2,…,(3.11)
one can obtain
w*(xβ€²,tΒ―β€²,Ξ»)=βˆ‘Ξ±β‰₯0(tβ€²Β―βˆ’tΒ―)Ξ±Ξ±!PΞ±(xβ€²,tΒ―)Sβˆ’1(xβ€²,tΒ―)*eβˆ’βˆ‘n=1∞(βˆ’1)2n+1tΒ―2n+1βˆ‚xβ€²2n+1(eβˆ’xβ€²Ξ»).(3.12)

Thus according to Lemma 3.2

Resλλrw*(x,tΒ―,βˆ’Ξ»)w*(xβ€²,tβ€²Β―,Ξ»)=ResΞ»(Sβˆ’1(x,tΒ―)*βˆ‚xr(exΞ»)βˆ‘Ξ±β‰₯0(tβ€²Β―βˆ’tΒ―)Ξ±Ξ±!PΞ±(xβ€²,tΒ―)(Sβˆ’1(xβ€²,tΒ―))*)(eβˆ’xβ€²Ξ»)=βˆ‘Ξ±β‰₯0(tβ€²Β―βˆ’tΒ―)Ξ±Ξ±!(Sβˆ’1(x,tΒ―))*βˆ‚xrSβˆ’1(x,tΒ―)PΞ±*(x,tΒ―)βˆ‚x(Ξ”0)=βˆ‘Ξ±β‰₯0(tβ€²Β―βˆ’tΒ―)Ξ±Ξ±!Q(t)PΞ±*(x,tΒ―)βˆ‚x(Ξ”0)=0,(3.13)
where we have used the fact Q = Q+ and PΞ± are differential operators.

Proposition 3.2.

Let w(t,Ξ») and w*(t,Ξ») be expressed by w = S (eΞΎ(t,Ξ»)) and w* = (Sβˆ’1)* (eβˆ’ΞΎ(t,Ξ»)) respectively, where S=1+βˆ‘n=1∞snβˆ‚βˆ’n and ΞΎ(t,Ξ»)=βˆ‘n=0∞t2n+1Ξ»2n+1. And define Q = (Sβˆ’1)* βˆ‚rSβˆ’1.

Then if w and w* satisfy Eq. (3.7), one can obtain Q = Q+ and βˆ‚t2n+1S=βˆ’(Sβˆ‚x2n+1Sβˆ’1)<0S, which means that w(t,Ξ») and w* (t,Ξ») are the wave and adjoint wave functions of the BCr-KP hierarchy.

Proof.

Starting from the bilinear identity Eq. (3.7) and using Lemma 3.2

0=Resλλrw*(x,tΒ―,βˆ’Ξ»)w*(xβ€²,tβ€²Β―,Ξ»)=ResΞ»(Sβˆ’1(x,t)*eβˆ‘nβ‰₯1t2n+1βˆ‚x2n+1βˆ‚xr)(exΞ»)β‹…(Sβˆ’1(xβ€²,tβ€²Β―)*eβˆ’βˆ‘nβ‰₯1t2n+1β€²(βˆ’βˆ‚xβ€²)2n+1)(eβˆ’xβ€²Ξ»)=Sβˆ’1(x,tΒ―)*βˆ‚xreβˆ‘nβ‰₯1(t2n+1βˆ’t2n+1β€²)βˆ‚x2n+1Sβˆ’1(x,tβ€²Β―)βˆ‚x(Ξ”0).(3.14)

Let tΒ―=tβ€²Β―, then

(Sβˆ’1)*βˆ‚xrSβˆ’1βˆ‚x(Ξ”0)=Q(t)βˆ‚x(Ξ”0)=0,(3.15)
which implies Q is a differential operator.

On the other hand

w*(t,Ξ»)=(Sβˆ’1)*(eβˆ’ΞΎ(t,Ξ»))=Q(t)Sβˆ‚xβˆ’r(eβˆ’ΞΎ(t,Ξ»))=(βˆ’1)rΞ»βˆ’rQ(t)(w(t,βˆ’Ξ»)).(3.16)

So

0=Resλλrw*(x,tΒ―,βˆ’Ξ»)w*(xβ€²,tβ€²Β―,Ξ»)=ResΞ»Q(t)(w(x,tΒ―,βˆ’Ξ»))w*(xβ€²,tβ€²Β―,Ξ»).(3.17)

Apply Qβˆ’1(t) on both sides of Eq. (3.17) and let Qβˆ’1(t)(0)=Ξ±(x,tΒ―),

Ξ±(x,tΒ―)=ResΞ»w(x,tΒ―,Ξ»)w*(xβ€²,tβ€²Β―,Ξ»)=ResΞ»(S(x,tΒ―)eβˆ‘nβ‰₯1t2n+1βˆ‚x2n+1)(exΞ»)(Sβˆ’1(xβ€²,tβ€²Β―)*eβˆ’βˆ‘nβ‰₯1t2n+1β€²(βˆ’βˆ‚xβ€²)2n+1)(eβˆ’xβ€²Ξ»)=S(x,tΒ―)eβˆ‘nβ‰₯1(t2n+1βˆ’t2n+1β€²)βˆ‚x2n+1Sβˆ’1(x,tβ€²Β―)βˆ‚x(Ξ”0).(3.18)

If tΒ―=tβ€²Β―, we have

Ξ±(x,tΒ―)=S(t)Sβˆ’1(t)βˆ‚x(Ξ”0)=0,(3.19)

Thus ResΞ»w(t,Ξ»)w* (tβ€², Ξ») = 0, which satisfies the bilinear identity of KP hierarchy, it is obvious that

βˆ‚t2n+1S=βˆ’(Sβˆ‚x2n+1Sβˆ’1)<0S.(3.20)

Corollary 3.1.

If Qβˆ’1(t)=βˆ‘i=0∞ai(t)βˆ‚xβˆ’rβˆ’i, where a0 = 1, a1 = 0, the bilinear identity Eq. (3.7) can be rewritten as

ResΞ»Ξ»βˆ’rw(x,tΒ―,Ξ»)w(xβ€²,tβ€²Β―,βˆ’Ξ»)={0,r=0,(CKP),1,r=1,(BKP),(xβˆ’xβ€²)rβˆ’1(rβˆ’1)!+βˆ‘i>1∞ai(tβ€²)(xβˆ’xβ€²)r+iβˆ’1(r+iβˆ’1)!,   r>1.(3.21)

Proof.

From the above proof in Proposition 3.2 and Eq. (3.16),

ResΞ»Ξ»βˆ’rw(x,tΒ―,Ξ»)Q(tβ€²)w(xβ€²,tβ€²Β―,βˆ’Ξ»)=0.(3.22)

By applying Qβˆ’1(tβ€²), and letting Ξ²(xβ€², Ξ²(xβ€²,tβ€²Β―)=Qβˆ’1(tβ€²)(0)) = Qβˆ’1(tβ€²)(0) and tβ€²Β―=tΒ―,

Ξ²(xβ€²,tΒ―)=S(x,tΒ―)βˆ‚xβˆ’rS*(x,tΒ―)βˆ‚x(Ξ”0)=Qβˆ’1(t)βˆ‚x(Ξ”0)={0,r=0,1,r=1,(xβˆ’xβ€²)rβˆ’1(rβˆ’1)!+βˆ‘i>1∞ai(xβ€²,tΒ―)(xβˆ’xβ€²)r+iβˆ’1(r+iβˆ’1)!,   r>1.(3.23)

Next, we discuss the bilinear identity formulation of the constrained BCr-KP hierarchy. For convenience, we will introduce squared eigenfunction potential Ξ©(ψ,Ο•) [22, 23], which is determined by the following conditions

Ξ©(ψ,Ο†)x=ΟˆΟ†,   Ω(ψ,Ο†)t2n+1=Resβˆ‚xβˆ’1ψ(L2n+1)β‰₯0Ο†βˆ‚xβˆ’1.(3.24)

Proposition 3.3.

For the constrained BCr-KP hierarchy Eq. (2.20),

βˆ‘j=1m(Q(q1j)(t)β‹…Q(q2j)(tβ€²)+(βˆ’1)rQ(q2j)(t)β‹…Q(q1j)(tβ€²))=Resλλk+rw*(t,βˆ’Ξ»)w*(tβ€²,Ξ»),(3.25)
Q(qlj)(t)=βˆ’ResΞ»(Ξ»rw*(t,Ξ»)Ξ©(qlj(tβ€²),w*(tβ€²,Ξ»))).(3.26)
where l = 1, 2.

Proof.

Firstly, consider the residue of Lkβˆ‚xp for an arbitrary integer p β‰₯ 0, and notice that Resβˆ‚x(Lk)βˆ’βˆ‚xp=Resβˆ‚xLkβˆ‚xp. Then according to Lemma 3.1 and S=Qβˆ’1(Sβˆ’1)*βˆ‚xr,

βˆ‘j=1m(q1j(t)(βˆ’1)pβˆ‚xp(Q(q2j)(t))+(βˆ’1)rq2j(t)(βˆ’1)pβˆ‚xp(Q(q1j)(t)))=Resβˆ‚xLkβˆ‚xp=Resβˆ‚xSβˆ‚xkSβˆ’1βˆ‚xp=(βˆ’1)pResΞ»Sβˆ‚xk(eΞΎ(t,Ξ»))βˆ‚xp(Sβˆ’1)*(eβˆ’ΞΎ(t,Ξ»))=(βˆ’1)pResΞ»Qβˆ’1(Sβˆ’1)*βˆ‚xk+r(eΞΎ(t,Ξ»))βˆ‚xp(Sβˆ’1)*(eβˆ’ΞΎ(t,Ξ»))=(βˆ’1)pResλλk+rQβˆ’1(t)w*(t,βˆ’Ξ»)βˆ‚xpw*(t,Ξ»).(3.27)

Further by using Eq. (2.10) and the formal expansion at tβ€² = t,

βˆ‘j=1m(q1j(t)Q(q2j)(tβ€²)+(βˆ’1)rq2j(t)Q(q1j)(tβ€²))=Resλλk+rQβˆ’1(t)w*(t,βˆ’Ξ»)w*(tβ€²,Ξ»).(3.28)

Lastly, by applying Q(t) on both sides of Eq. (3.28), one can obtain Eq. (3.25).

According to Eq. (2.14) and Eq. (3.7),

βˆ‘j=1m(Q(q1j)(t)Q(q2j)(tβ€²)+(βˆ’1)rQ(q2j)(t)Q(q1j)(tβ€²))=Resλλ*w*(t,βˆ’Ξ»)(Lk)*(tβ€²)w*(tβ€²,Ξ»)=Resλλ*w*(t,βˆ’Ξ»)(Bk*(tβ€²)βˆ’βˆ‘j=1m(Q(q2j)(tβ€²)βˆ‚xβ€²βˆ’1β‹…q1j(tβ€²)+(βˆ’1)rQ(q1j)(t)βˆ‚xβ€²βˆ’1β‹…q2j(tβ€²)))w*(tβ€²,Ξ»)=βˆ’βˆ‘j=1mResλλrw*(t,βˆ’Ξ»)(Q(q2j)(tβ€²)Ξ©(q1j(tβ€²),w*(tβ€²,Ξ»))+(βˆ’1)rQ(q1j)(tβ€²)Ξ©(q2j(tβ€²),w*(tβ€²,Ξ»))).(3.29)

According to Q(q1j)(tβ€²) and Q(q2j)(tβ€²) are independent, and from the comparison of both sides

Q(qlj)(t)=βˆ’Resλλrw*(t,βˆ’Ξ»)Ξ©(qlj(tβ€²),w*(tβ€²,Ξ»)),   l=1,2.(3.30)

Proposition 3.4.

Let w(t,Ξ») and w* (t,Ξ») be expressed by w = S (eΞΎ(t,Ξ»)) and w* = (Sβˆ’1)* (eβˆ’ΞΎ(t,Ξ»)) respectively, where w=1+βˆ‘n=1∞snβˆ‚βˆ’n and ΞΎ(t,Ξ»)=βˆ‘n=0∞t2n+1Ξ»2n+1. And define Q = (Sβˆ’1)*βˆ‚rSβˆ’1.

If w and w* satisfy Eq. (3.25) and Eq. (3.26), then βˆ‚t2n+1S=βˆ’(Sβˆ‚x2n+1Sβˆ’1)<0S and (Lk)<0=βˆ‘j=1m(q1jβˆ‚xβˆ’1β‹…Q(q2j)+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Q(q1j)). Therefore, Eq. (3.25) and Eq. (3.26) satisfy the characteristics of the constrained BCr-KP hierarchy.

Proof.

Firstly, we prove Eq. (3.26) implies the bilinear identity Eq. (3.7). By differentiating both sides of Eq. (3.26) with respect to xβ€²,

βˆ‚xβ€²(Q(qlj)(t))=0=βˆ’Resλλrw*(t,βˆ’Ξ»)qlj(tβ€²)w*(tβ€²,Ξ»),   l=1,2.(3.31)

It is obvious that

Resλλrw*(t,βˆ’Ξ»)w*(tβ€²,Ξ»)=0.(3.32)

On the other hand, by differentiating both sides of Eq. (3.25) with respect to t2n+1,

βˆ‘j=1m(βˆ‚t2n+1Q(q1j)(t)Q(q2j)(tβ€²)+(βˆ’1)rβˆ‚t2n+1Q(q2j)(t)Q(q1j)(tβ€²))=βˆ’Resλλk+rB2n+1*(t)w*(t,βˆ’Ξ»)w*(tβ€²,Ξ»)=βˆ’βˆ‘j=1m(B2n+1*(Q(q1j)(t))Q(q2j)(tβ€²)+(βˆ’1)rB2n+1*(Q(q2j)(t))Q(q1j)(tβ€²)),(3.33)
which means that Q(qlj)(t) is the adjoint eigenfunction, since Q(q1j)(t) and Q(q2j)(t) are independent. By differentiating both sides of qlj(t) = Qβˆ’1(Q(qlj)(t)) with respect to t2n+1, according to Eq. (2.10) and Q(qlj)(t) is the adjoint eigenfunction
βˆ‚t2n+1qlj(t)=βˆ’Qβˆ’1βˆ‚t2n+1Qβ‹…Qβˆ’1(Q(qlj)(t))+Qβˆ’1β‹…βˆ‚t2n+1(Q(qlj)(t))=B2n+1(qlj(t)).(3.34)

So qlj(t) is the eigenfunction.

Finally, by applying Qβˆ’1(t) on Eq. (3.25), formally expanding at tβ€² = t and according to Eq. (2.13) and Lemma 3.1

βˆ‘j=1m(q1j(t)βˆ‚xpQ(q2j)(t)+(βˆ’1)rq2j(t)βˆ‚xpQ(q1j)(t))=Resλλk+rQβˆ’1(t)w*(t,βˆ’Ξ»)βˆ‚xpw*(t,Ξ»)=ResΞ»LkSexΞ»βˆ‚xp(Sβˆ’1)*eβˆ’xΞ»=(βˆ’1)pResβˆ‚xLkβˆ‚xp.(3.35)

This implies that the negative part of the Lax operator Lk has the form Eq. (2.20). It is proved that Eq. (3.25) and Eq. (3.26) satisfy the characteristics of the constrained BCr-KP hierarchy.

4. Squared Eigenfunction Symmetries of the BCr-KP Hierarchy and its Constrained Case

We construct the squared eigenfunction symmetries associated with the BCr-KP hierarchy and its constrained case in this section.

Denoting the corresponding group parameter as Ξ±, we define the squared eigenfunction flow by

βˆ‚Ξ±S=βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i))S,(4.1)
βˆ‚Ξ±L=[βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)),L],(4.2)

It is essential that the definition of βˆ‚Ξ± must keep the BCr-constraint. The next proposition will explain the definition of βˆ‚Ξ± is reasonable.

Proposition 4.1.

For the BCr-KP hierarchy,

βˆ‚Ξ±Q=(βˆ‚Ξ±Q)+.(4.3)

Proof.

According to Eq. (2.15)

βˆ‚Ξ±Q=βˆ’(Sβˆ’1)*βˆ‚Ξ±S*β‹…(Sβˆ’1)*βˆ‚xrSβˆ’1βˆ’(Sβˆ’1)*βˆ‚xrSβˆ’1βˆ‚Ξ±Sβ‹…Sβˆ’1=βˆ’(βˆ‚Ξ±Sβ‹…Sβˆ’1)*Qβˆ’Qβˆ‚Ξ±Sβ‹…Sβˆ’1.(4.4)

According to Eq. (2.4), Eq. (4.1) and Q* = (βˆ’1)rQ, we can obtain that

(βˆ‚Ξ±Q)βˆ’=βˆ’((βˆ‚Ξ±Sβ‹…Sβˆ’1)*Q+Qβˆ‚Ξ±Sβ‹…Sβˆ’1)βˆ’=βˆ’βˆ‘i=1m((Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i))*Q   +Q(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)))βˆ’=βˆ‘i=1m(Q(Ο†2i)βˆ‚xβˆ’1β‹…Q*(Ο†1i)+(βˆ’1)rQ(Ο†1i)βˆ‚xβˆ’1β‹…Q*(Ο†2i)βˆ’Q(Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)βˆ’(βˆ’1)rQ(Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i))=0.(4.5)

Next, we need to check [βˆ‚Ξ±,βˆ‚t2n+1] = 0, which means that βˆ‚Ξ± is the symmetry of the BCr-KP hierarchy.

Proposition 4.2.

For the BCr-KP hierarchy,

[βˆ‚Ξ±,βˆ‚t2n+1]=0.(4.6)

Proof.

For convenience, assume Mβ€²=βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)). Then

βˆ‚Ξ±L=[Mβ€²,L]β‡’βˆ‚Ξ±L2n+1=[Mβ€²,L2n+1],(4.7)
whence the projection to differential orders β‰₯ 0 yields to βˆ‚Ξ±B2n+1 = [Mβ€², L2n+1]β‰₯0. Because Mβ€² ∈ 𝔀<0 and [𝔀<0,𝔀<0] βŠ‚ 𝔀<0
βˆ‚Ξ±B2n+1=[Mβ€²,(L(2n+1))β‰₯0+(L2n+1)<0]β‰₯0=[Mβ€²,B2n+1]β‰₯0.(4.8)

On the other hand, according to Eq. (2.4)

[B2n+1,Mβ€²]<0=βˆ‘i=1m(B2n+1(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)))<0βˆ’βˆ‘i=1m((Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i))B2n+1)<0βˆ‘i=1m(B2n+1(Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rB2n+1(Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i))βˆ’βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…B2n+1*(Q(Ο†2i))+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…B2n+1*(Q(Ο†1i)Bn)),(4.9)
one concludes
[B2n+1,Mβ€²]<0=βˆ‚t2n+1Mβ€².(4.10)

The pseudo-differential zero curvature equation will be obtained by Eq. (4.8) and Eq. (4.10),

βˆ‚Ξ±B2n+1βˆ’βˆ‚t2n+1Mβ€²=[Mβ€²,B2n+1].(4.11)

This establishes the commutativity of the squared eigenfunction flow and the Lax hierarchy:

βˆ‚t2n+1LΞ±βˆ’βˆ‚Ξ±Lt2n+1=[Mβ€²,L]t2n+1βˆ’[B2n+1,L]Ξ±=[Mt2n+1β€²βˆ’βˆ‚Ξ±B2n+1,L]+[Mβ€²,Lt2n+1]βˆ’[B2n+1,LΞ±]=[βˆ‚t2n+1Mβ€²βˆ’βˆ‚Ξ±B2n+1+[Mβ€²,B2n+1],L]=0.(4.12)

Remark 4.1.

If identifying the squared eigefunction symmetry flow βˆ‚Ξ± with the time flow βˆ’βˆ‚t2kβˆ’1 in the BCr-KP hierarchy, one can obtain the following constraint on the Lax operator

(Lk)<0=βˆ‘i=1m(Ο†1iβ‹…βˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβ‹…βˆ‚xβˆ’1β‹…Q(Ο†1i)),(4.13)
which is just the definition of the constrained BCr-KP hierarchy and k is odd.

Then we will consider the actions of βˆ‚Ξ± on eigenfunctions.

Proposition 4.3.

The squared eigenfunction symmetry of Proposition 4.2 is the compatibility condition of the linear problems:

Ο†t2n+1=(L2n+1)β‰₯0(Ο†),   φα=βˆ‘i=1m(Ο†1iΞ©(Q(Ο†2i),Ο†)+(βˆ’1)rΟ†2iΞ©(Q(Ο†1i),Ο†)).(4.14)

Proof.

The aim is to prove (Ο• t2n+1)Ξ± = (ϕα) t2n+1 with the help of Eq. (4.1) or Eq. (4.2). At first,

βˆ‚t2n+1φα=βˆ‘i=1m(B2n+1(Ο†1i)Ξ©(Ο†2i),Ο†)+(βˆ’1)rB2n+1(Ο†2i)Ξ©(Q(Ο†1i),Ο†))+βˆ‘i=1mResβˆ‚(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)B2n+1Ο†β‹…βˆ‚xβˆ’1+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)B2n+1Ο†β‹…βˆ‚xβˆ’1)=βˆ‘i=1m(B2n+1(Ο†1i)Ξ©(Ο†2i),Ο†)+(βˆ’1)rB2n+1(Ο†2i)Ξ©(Q(Ο†1i),Ο†))+Resβˆ‚(Mβ€²B2n+1Ο†βˆ‚xβˆ’1).(4.15)

According to Eq. (4.11), we obtain that

βˆ‚Ξ±B2n+1βˆ’βˆ‚t2n+1Mβ€²=Mβ€²B2n+1βˆ’B2n+1Mβ€².(4.16)

Therefore

βˆ‚t2n+1φα=βˆ‘i=1m(B2n+1(Ο†1i)Ξ©(Q(Ο†2i),Ο†)+(βˆ’1)rB2n+1(Ο†2i)Ξ©(Q(Ο†1i),Ο†))+Resβˆ‚Ξ±(βˆ‚Ξ±B2n+1β‹…Ο†βˆ‚xβˆ’1)βˆ’Resβˆ‚(Mt2n+1β€²Ο†βˆ‚xβˆ’1)Resβˆ‚(B2n+1Mβ€²Ο†βˆ‚xβˆ’1).(4.17)

According to Eq. (2.3), the second term yields

Resβˆ‚Ξ±(βˆ‚Ξ±B2n+1β‹…Ο†βˆ‚xβˆ’1)=βˆ‚Ξ±B2n+1(Ο†).(4.18)

Because Mt2n+1β€²βˆ‚xβˆ’1βˆˆπ”€<0, the third term yields

Resβˆ‚Ξ±(Mt2n+1β€²Ο†βˆ‚xβˆ’1)=0.(4.19)

According to fx = βˆ‚x f βˆ’ f βˆ‚x, the fourth term yields

Resβˆ‚x(B2n+1Mβ€²Ο†βˆ‚xβˆ’1)=βˆ‘i=1mResβˆ‚x(B2n+1Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)Ο†βˆ‚xβˆ’1+(βˆ’1)rB2n+1Ο†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)Ο†βˆ‚xβˆ’1)=βˆ‘i=1mResβˆ‚x(B2n+1Ο†1iβˆ‚xβˆ’1β‹…(βˆ‚xΞ©(Q(Ο†2i),Ο†)βˆ’Ξ©(Q(Ο†2i),Ο†)βˆ‚x)β‹…βˆ‚xβˆ’1)+βˆ‘i=1mResβˆ‚x((βˆ’1)rB2n+1Ο†2iβˆ‚xβˆ’1β‹…(βˆ‚xΞ©(Q(Ο†1i),Ο†)βˆ’Ξ©(Q(Ο†1i),Ο†)βˆ‚x)β‹…βˆ‚xβˆ’1)=B2n+1(βˆ‘i=1m(Ο†1iΞ©(Q(Ο†2i),Ο†)+(βˆ’1)rΟ†2iΞ©(Q(Ο†1i),Q)))βˆ’βˆ‘i=1m(B2n+1(Ο†1i)Ξ©(Q(Ο†2i),Ο†)+(βˆ’1)rB2n+1(Ο†2i)Ξ©(Q(Ο†1i),Ο†)),(4.20)
whence
βˆ‚t2n+1φα=βˆ‘i=1m(B2n+1(Ο†1i)Ξ©(Ο†2i),Ο†)+(βˆ’1)rB2n+1(Ο†2i)Ξ©(Q(Ο†1i),Ο†))+βˆ‚Ξ±B2n+1(Ο†)+B2n+1(βˆ‘i=1m(Ο†1iΞ©(Q(Ο†2i),Ο†)+(βˆ’1)rΟ†2iΞ©(Q(Ο†1i),Ο†)))=βˆ‘i=1m(B2n+1(Ο†1i)Ξ©(Q(Ο†2i),Ο†)+(βˆ’1)rB2n+1(Ο†2i)Ξ©(Q(Ο†1i),Ο†))=βˆ‚Ξ±B2n+1(Ο†)+B2n+1(φα)=βˆ‚Ξ±Ο†t2n+1.(4.21)

Now we study the commutativity of two squared eigenfunction symmetries generated by eigen-functions Ο•li and qlj (l = 1, 2, i = 1, ,...,m, j = 1, 2,...,m), separately.

Proposition 4.4.

Let Ο•li and qlj (l = 1, 2, i = 1, 2,...,m, j = 1, 2,...,m) satisfy

βˆ‚t2n+1(Ο†li)=(L2n+1)β‰₯0(Ο†li),β€‰β€‰β€‰βˆ‚t2n+1(qlj)=(L2n+1)β‰₯0(qlj),(4.22)
and
βˆ‚Ξ±2(Ο†li)=βˆ‘j=1m(q1jΞ©(Q(q2j),Ο†li)+(βˆ’1)rq2jΞ©(Q(q1j),Ο†li)),(4.23)
βˆ‚Ξ±1(qlj)=βˆ‘j=1m(Ο†1iΞ©(Q(Ο†2i),qlj)+(βˆ’1)rΟ†2iΞ©(Q(Ο†1i),qlj)).(4.24)

Then

Mβ€²=βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)),(4.25)
Mβ€³=βˆ‘j=1m(q1jβˆ‚xβˆ’1β‹…Q(q2j)+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Q(q1j)),(4.26)
satisfy the zero curvature equation Mβ€²Ξ±2 βˆ’ Mβ€³Ξ±1 = [Mβ€³, Mβ€²], further [βˆ‚Ξ±1,βˆ‚Ξ±2] = 0.

Proof.

At first, we consider Mβ€²Ξ±2 and Mβ€³Ξ±1

MΞ±2β€²=βˆ‘i=1m((Ο†1i)Ξ±2βˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)r(Ο†2i)Ξ±2βˆ‚xβˆ’1β‹…Q(Ο†1i))  +βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…(Q(Ο†2i))Ξ±2+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…(Q(Ο†1i))Ξ±2),(4.27)
MΞ±1β€³=βˆ‘j=1m((q1j)Ξ±2βˆ‚xβˆ’1β‹…Q(q2j)+(βˆ’1)r(q2j)Ξ±2βˆ‚xβˆ’1β‹…Q(q1j))  +βˆ‘i=1m(q1jβˆ‚xβˆ’1β‹…(Q(q2j))Ξ±1+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…(Q(q1j))Ξ±1).(4.28)

According to Eq. (4.25), Eq. (4.26) and βˆ‚xβˆ’1fxβˆ‚xβˆ’1=fβˆ‚xβˆ’1βˆ’βˆ‚xβˆ’1f, we calculate [Mβ€³, Mβ€²] = Mβ€³Mβ€² βˆ’ Mβ€²Mβ€³

Mβ€³Mβ€²=βˆ‘j=1mβˆ‘i=1m(q1jβˆ‚xβˆ’1β‹…Q(q2j)Ο†1iβˆ‚xβˆ’1Q(Ο†2i)+(βˆ’1)rq1jβˆ‚xβˆ’1β‹…Q(q2j)Ο†2iβˆ‚xβˆ’1Q(Ο†1i)+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Q(q1j)Ο†1iβˆ‚xβˆ’1Q(Ο†2i)+q2jβˆ‚xβˆ’1β‹…Q(q1j)Ο†2iβˆ‚xβˆ’1Q(Ο†1i))=βˆ‘j=1mβˆ‘i=1m(q1jΞ©(Q(q2j),Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)βˆ’q1jβˆ‚xβˆ’1β‹…Ξ©(Q(q2j),Ο†1i)Q(Ο†2i)+(βˆ’1)rq1jΞ©(Q(q2j),Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i)βˆ’(βˆ’1)rq1jβˆ‚xβˆ’1β‹…Ξ©(Q(q2j),Ο†2i)Q(Ο†1i)+(βˆ’1)rq2jΞ©(Q(q1j),Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)βˆ’(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Ξ©(Q(q1j),Ο†1i)Q(Ο†2i)+q2jΞ©(Q(q1j),Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i)βˆ’q2jβˆ‚xβˆ’1β‹…Ξ©(Q(q1j),Ο†2i)Q(Ο†1i))(4.29)

We can get Mβ€²Mβ€³ by exchanging Ο•lj with qlj in Eq. (4.29), where l = 1,2. So

MΞ±2β€²βˆ’MΞ±1β€³=[Mβ€³,Mβ€²]=MΞ±2β€²βˆ’MΞ±1β€³βˆ’Mβ€³Mβ€²+Mβ€²Mβ€³=0.(4.30)

Hence

[βˆ‚Ξ±1,βˆ‚Ξ±2]L=βˆ‚Ξ±1[Mβ€³,L]βˆ’βˆ‚Ξ±2[Mβ€²,L]=βˆ‚Ξ±1[Mβ€³βˆ’βˆ‚Ξ±2Mβ€²,L]+[Mβ€³,[Mβ€²,L]]βˆ’[Mβ€²,[Mβ€³,L]]=[MΞ±2β€²βˆ’MΞ±1β€³βˆ’[Mβ€³,Mβ€²],L]=0.(4.31)

At last, we consider the squared eigenfunction symmetries associated with the constrained BCr -KP hierarchy.

Proposition 4.5.

The constrained BCr-KP hierarchy

Lk=(Lk)β‰₯0+βˆ‘j=1m(q1jβˆ‚xβˆ’1β‹…Q(q2j)+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Q(q1j))
is invariant under the squared eigenfunction flow
βˆ‚Ξ±L=[βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Q(Ο†1i)),L],(4.32)
βˆ‚Ξ±qlj=βˆ‘i=1m(Ο†1iΞ©(Q(Ο†2i),qlj)+(βˆ’1)rΟ†2iΞ©(Q(Ο†1i),qlj)),(4.33)
if Ο•l1,...,Ο•lm and Q(Ο•l1),…,Q(Ο•lm) satisfy
Bk(Ο†1i)+βˆ‘j=1m(q1jΞ©(Q(q2j),Ο†1i)+(βˆ’1)rq2jΞ©(Q(q1j),Ο†1i))=Ξ»iΟ†1i,(4.34)
Bk(Ο†2i)+βˆ‘j=1m(q1jΞ©(Q(q2j),Ο†2i)+(βˆ’1)rq2jΞ©(Q(q1j),Ο†2i))=(βˆ’1)rΞ»iΟ†2i.(4.35)
with arbitrary spectral parameters, l = 1,2, λi ∈ C and k is odd.

Proof.

Mβ€² and Mβ€³ are defined by Eq. (4.25) and Eq. (4.26) respectively,

((Lk)<0βˆ’βˆ‘j=1m(q1jβˆ‚xβˆ’1β‹…Q(q2j)+(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Q(q1j)))Ξ±=βˆ‚Ξ±(Lk)<0βˆ’MΞ±β€²=[Mβ€²,Bk+Mβ€³]<0βˆ’MΞ±β€²=[Mβ€²,Bk]<0οΈΈ(a)+[Mβ€²,Mβ€³]<0βˆ’MΞ±β€²οΈΈ(b).(4.36)

According to Eq. (4.9),

(a)=βˆ’βˆ‘i=1m(Bk(Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)+(βˆ’1)rBk(Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i))   +βˆ‘i=1m(Ο†1iβˆ‚xβˆ’1β‹…Bk*(Q(Ο†2i))+(βˆ’1)rΟ†2iβˆ‚xβˆ’1β‹…Bk*(Q(Ο†1i))).(4.37)

So according to Eq. (2.4), Eq. (4.29) and Eq. (4.33),

(b)=βˆ’βˆ‘j=1mβˆ‘i=1m(q1jΞ©(Q(q2j),Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)βˆ’q1jβˆ‚xβˆ’1β‹…Ξ©(Q(q2j),Ο†1i)Q(Ο†2i)+(βˆ’1)rq1jΞ©(Q(q2j),Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i)βˆ’(βˆ’1)rq1jβˆ‚xβˆ’1β‹…Ξ©(Q(q2j),Ο†2i)Q(Ο†1i)+(βˆ’1)rq2jΞ©(Q(q1j),Ο†1i)βˆ‚xβˆ’1β‹…Q(Ο†2i)βˆ’(βˆ’1)rq2jβˆ‚xβˆ’1β‹…Ξ©(Q(q1j),Ο†1i)Q(Ο†2i)+q2jΞ©(Q(q1j),Ο†2i)βˆ‚xβˆ’1β‹…Q(Ο†1i)βˆ’q2jβˆ‚xβˆ’1β‹…Ξ©(Q(q1j),Ο†2i)Q(Ο†1i)).(4.38)

By Eq. (4.34) and Eq. (4.35), one can notice that (a) + (b) = 0.

5. Conclusions and Discussions

Firstly, the bilinear identities of the BCr-KP hierarchy are investigated in Proposition 3.1 and Proposition 3.2, and the bilinear identities of the constraint case are studied in Proposition 3.3 and Proposition 3.4. Next, the squared eigenfunction symmetries are constructed in Eq. (4.1) and Eq. (4.2). And the corresponding definition is showed to be reasonable in Proposition 4.1 and Proposition 4.2. What’s more, the actions of the squared eigenfunctions symmetry on the eigenfunction are given in Proposition 4.3. Also the commutativity of two different squared eigenfunction symmetries are discussed in Proposition 4.4. Lastly the squared eigenfunction symmetries associated with the constrained BCr-KP hierarchy are studied in Proposition 4.5.

The bilinear identities of the BCr-KP hierarchy can help us to discuss the existence of the tau functions. Though the tau functions of the BKP and CKP hierarchies are investigated in [3, 8], it is still worth studying the tau functions of the BCr-KP hierarchies for r β‰₯ 2. Just as we have said in Section 1, the squared eigenfunction symmetry can used to define the new integrable systems and study the additional symmetry. In fact, the constrained BCr-KP hierarchy can be obtained by identify βˆ‚Ξ± with βˆ’βˆ‚t2n+1. The generating operator YBCr(Ξ»,ΞΌ) [28] of the additional symmetries of the BCr-KP hierarchy can be used to define the squared symmetry βˆ‚Ξ±, and therefore,

βˆ‚Ξ±=βˆ’βˆ‘m=0∞(ΞΌβˆ’Ξ»)mm!βˆ‘l=βˆ’βˆžβˆžΞ»βˆ’lβˆ’mβˆ’1βˆ‚m,m+l*.(5.1)

So the squared eigenfunction symmetry defined by the (adjoint) wave functions w(t,ΞΌ) and w* (t,Ξ») can be viewed as the generator of the additional symmetries.

Acknowledgments

This work is supported by China Postdoctoral Science Foundation (Grant No. 2016M591949) and Jiangsu Postdoctoral Science Foundation (Grant No. 1601213C).

References

[8]E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Transformation groups for solition equations, in Non-linear integrable systems, Classical theory and quantum theory, pp. 39-119. World Scientific
Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
26 - 3
Pages
404 - 419
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2019.1613049How to use a DOI?
Copyright
Β© 2019 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Lumin Geng
AU  - Huizhan Chen
AU  - Na Li
AU  - Jipeng Cheng
PY  - 2021
DA  - 2021/01/06
TI  - Bilinear Identities and Squared Eigenfunction Symmetries of the BCr-KP Hierarchy
JO  - Journal of Nonlinear Mathematical Physics
SP  - 404
EP  - 419
VL  - 26
IS  - 3
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2019.1613049
DO  - 10.1080/14029251.2019.1613049
ID  - Geng2021
ER  -