International Journal of Computational Intelligence Systems

Volume 14, Issue 1, 2021, Pages 582 - 593

Generalized Direct Product of Complex Intuitionistic Fuzzy Subrings

Authors
Muhammad Gulzar1, ORCID, M. Haris Mateen2, ORCID, Yu-Ming Chu3, *, ORCID, Dilshad Alghazzawi4, ORCID, Ghazanfar Abbas5
1Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
2Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
3Department of Mathematics, Huzhou University, Huzhou 313000, P. R. China
4Department of Mathematics, King Abdulaziz University, Rabigh 21589, Saudi Arabia
5Department of Mathematics and Statistics, Institute of Southern Punjab, Multan 66000, Pakistan
*Corresponding author. Email: chuyuming@zjhu.edu.cn
Corresponding Author
Yu-Ming Chu
Received 2 April 2020, Accepted 28 December 2020, Available Online 15 January 2021.
DOI
10.2991/ijcis.d.210106.001How to use a DOI?
Keywords
Complex intuitionistic fuzzy sets; Complex intuitionistic fuzzy subrings; Product of complex intuitionistic fuzzy subsets; Product of complex intuitionistic fuzzy subrings; Level subsets of complex intuitionistic fuzzy subset
Abstract

The objective of this article is to present the notion of direct product of two complex intuitionistic fuzzy subrings. We show that the direct product of two complex intuitionistic fuzzy subrings is also complex intuitionistic fuzzy subring and discuss its various algebraic aspects. We also define the level subsets of the direct product of two complex intuitionistic fuzzy subsets and prove that the level subset of the direct product of two complex intuitionistic fuzzy subring is subring and prove some fundamental result of this phenomena. We show that the homomorphic image (preimage) of the direct product of complex intuitionistic fuzzy subrings is a complex intuitionistic fuzzy subring by using the notion of classical homomorphism.

Copyright
© 2021 The Authors. Published by Atlantis Press B.V.
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Obscurity is a pervasive part of human life. This world is not pertaining to accurate calculations or hypothesis. This error in assessment is really problematic for human intelligence. A variety of mathematical notions have been formulated as handy approaches to tackle this difficulty wherein fuzzy sets and complex fuzzy sets are also included. The complex fuzzy logic have been formed on a system of group having ambiguous knowledge. Owing to elastic quality of complex intuitionistic fuzzy sets to handle unreliability, this event is regarded wonderfully great for humanistic logic underlying inaccurate reality and limitless knowledge. This doctrine is doubtlessly a core point of classical complex fuzzy sets as it provides further opportunity to put forth incorrect information, leading to more suitable solution for numerous challenges. These certain sets developed favorable models in situation wherein we are to deal with highly limited choices like yes or no. The other significant property of this knowledge as it empowers man to analyze negative and positive aspects of inaccurate concepts. The branch of mathematics related to fuzzy set theory is known as fuzzy mathematics. In 1965, it was innovated after the seminal paper of Zadeh [1] on fuzzy sets, who is the founder of this theory. Rosenfeld [2] commenced the fuzzification algebraic structure in 1971. He initiated the concept of fuzzy subgroups. Liu [3] developed a link between ring theory and fuzzy sets and presented the theory of fuzzy subring. Atanassov [4] presented the idea of intuitionistic fuzzy sets. He also defined some properties of intuitionistic fuzzy sets in [5]. Dixit et al. [6] depicted the notion of level subgroup in 1990. Kumbhojkar and Bapat [7] studied correspondence theorem for fuzzy ideals. Gupta and Kantroo [8] defined the relation between intrinsic product and fuzzy subring. Atanassov [9] presented many interesting new operations about intuitionistic fuzzy sets in 1994. The more development about the application of intuitionistic fuzzy sets in different algebraic structure may be viewed in [10]. Biswas [11] started the conception of intuitionistic fuzzy subgroups in 1997. Gang and Jun [12] describe fuzzy factor ring in 1998. A new concept of complex fuzzy sets was presented by Ramot et al. [13]. The extension of fuzzy sets to complex fuzzy sets is comparable to the extension of real numbers to complex numbers. The more development of complex fuzzy sets can be viewed in [14]. Banerjee and Basnet [15] studied intuitionistic fuzzy subrings in 2003. Yetkin and Olgun [16] studied the direct product of fuzzy subgroup and fuzzy subring in 2011. Thirunavukarasu et al. [17] illustrated possible application including complex fuzzy representation of solar activity, time series, forecasting problems, signal processing application and compare the two national economies by using the concept of complex fuzzy relation. Azam et al. [18] defined the some properties of anti-fuzzy ideal in 2013. In addition, the ambiguity and uncertainty which exist in the data arises from everyday life, with the phase shift of data. Thus, it is theoretically insufficient to take this information into account, therefore information is lost in process. To overcome this, Alkouri and Salleh [19] gave the idea of complex intuitionistic fuzzy subsets and enlarge the basic properties of this phenomena. This concept became more effective and useful in scientific field because it deals with degree of membership and nonmembership in complex plane. They also initiated the concept of complex intuitionistic fuzzy relation and developed fundamental operation of complex intuitionistic fuzzy sets in [20,21]. Al-Husban and Salleh [22] introduced the concept of complex fuzzy subgroups in 2016. Ali and Tamir [23] innovated the notion complex intuitionistic fuzzy classes in 2016. Salih and Ahmed [24] delineated the fundamental attribution of α-Q-Fuzzy subgroup in 2017. Alsarahead and Ahmed [25,26] proposed the new ideas of complex fuzzy subgroup and complex fuzzy subring in 2017. These concept are different from fuzzy subgroups [2] and fuzzy ideal [3]. They also introduced a new concept of complex intuitionistic fuzzy subrings in [27] and depicted the elementary properties of this fact. Ameri et al. [28] studied some fundamental results about strongly transitive fuzzy geometric spaces. Alolaiyan and Abbas [29] established a stability of complete fuzzy hypergraphs and used it to find a safe and scientific way in computerized tomography (CT) scans. Gulstan et al. [30] expounded the notion (α,β) complex fuzzy hyperideal. The algebraic structure of weakly and almost T-ABSO fuzzy modules was studied in [31]. Many interesting results about complex intuitionistic fuzzy graph and cellular network provider companies were presented in [32]. Garg and Rani [3338] made remarkable effort to generalize the notion of complex intuitionistic fuzzy sets in decision-making problems. Aloaiyan et al. [39] described a novel frame work of t-intuitionistic fuzzification of Lagranges theorem. Nguyen [40] defined a some powerful operation of intuitionistic fuzzy sets in decision-making problems. We organized this paper as follows: Section 2 contains the introductory definition of complex intuitionistic fuzzy subrings and related result which plays a key role for our further discussion. In Section 3 we define of the direct product two complex fuzzy subsets. We prove that the product of two complex intuitionistic fuzzy subrings is complex intuitionistic fuzzy subring and also the fundamental properties of the direct product of complex intuitionistic fuzzy subrings are discussed deeply in this section. In Section 4, we explicate the level subset of the product of two complex intuitionistic fuzzy subsets. We prove that the level subset of the direct product of two complex intuitionistic fuzzy subrings is subring and also investigate the algebraic properties of this phenomena. Section 5 deal the notion of direct product of complex intuitionistic fuzzy subring under ring homomorphism.

2. PRELIMINARIES

We recall first the elementary notion of complex intuitionistic fuzzy sets and complex intuitionistic fuzzy subrings which play a key role for our further analysis.

Definition 2.1.

[1] A fuzzy set λ of a nonempty set P is a mapping, λ:P[0,1].

Definition 2.2.

[4] An intuitionistic fuzzy set A of a universe of discourse P is a triplet of the form A={(m,λA(m),λ^A(m)):mP}, where the function λA(m):P[0,1] and λ^A(m):P[0,1] are represents the membership and nonmembership of an element m of P, respectively. These function must fulfill the condition 0λA(m)+λ^A(m)1.

Definition 2.3.

[9] Let A and B be any two intuitionistic fuzzy sets of the universe of discourse P. Then the following operation are defined as:

  1. (AB)(m)={(m,λAB(m),λ^AB(m))|mP}, where λAB(m)=min{λA(m),λB(m)} and λ^AB(m)=max{λ^A(m),λ^B(m)},

  2. (AB)(m)={(m,λAB(m),λ^AB(m))|mP}, where λAB(m)=max{λA(m),λB(m)} and λ^AB(m)=min{λ^A(m),λ^B(m)},

  3. (A+B)(m)=(m,λA(m)+λB(m)λA(m).λB(m),λ^A(m).λ^B(m))|mP,

  4. (A.B)(m)=(m,λA(m).λB(m),λ^A(m)+λ^B(m)λ^A(m).λ^B(m))|mP.

Definition 2.4.

[15] An intuitionistic fuzzy set A of a ring S is called a intuitionistic fuzzy subring S, if the following condition hold:

  • λA(mn)min{λA(m),λA(n)},

  • λA(mn)min{λA(m),λA(n)},

  • λ^A(mn)max{λ^A(m),λ^A(n)},

  • λ^A(mn)max{λ^A(m),λ^A(n)}, for all m,nS.

Definition 2.5.

[13] A complex fuzzy set A of universe of discourse P is identify with the membership function θA(m)=ηA(m)eiφA(m) and is defined as θA:P{zC:|z|1}, where C is set of complex numbers. This membership function receive all membership value from the unit disc on complex plane, where i=1, where both ηA(m) and φA(m) are the real valued such that ηA(m)[0,1] and φA(m)[0,2π]. In this paper, we use CFS for complex fuzzy subset.

Remark 2.6.

By setting φA(m)=0 in above definition, we return back to classical fuzzy set.

Definition 2.7.

[19] A complex intuitionistic fuzzy set A of crisp nonempty set P is an object of the form A={(m,θA(m),θ^A(m)):mP} where the membership function θA(m)=ηA(m)eiφA(m) and nonmembership function θ^A(m)=η^A(m)eiφ^A(m) is defined as θA:P{zC:|z|1} and θ^A:P{zC:|z|1}, where C is set of complex numbers. These membership and nonmembership function receive all degree of membership and nonmembership from the unit disc on complex plane respectively such that the sum of membership and nonmembership value is also lies within unit disc of complex plane, where i=1,ηA(m),η^A(m),φA(m) and φ^A(m) are real-valued function such that 0ηA(m)+η^A(m)1 and 0φA(m)+φ^A(m)2π. In this paper we use the complex intuitionistic fuzzy set (CIFS) for the complex fuzzy subset. For the sake of simplicity we shall use θA(m)=ηA(m)eiφA(m),θB(m)=ηB(m)eiφB(m) as the membership function and θ^A(m)=η^A(m)eiφ^A(m),θ^B(m)=η^B(m)eiφ^B(m) as the nonmembership function of CIFS A and B, respectively.

Remark 2.8.

It is important to note that one can obtain the traditional intuitionistic fuzzy set by choosing the value φA(m)=φ^A(m)=0 in Definition [2.7].

Definition 2.9.

[27]

  1. A complex intuitionistic fuzzy set (CIFS) A is homogeneous CIFS, if for all m,xS, we have

    1. ηA(m)ηA(x) if and only if φA(m)φA(x),

    2. η^A(m)η^A(x) if and only if φ^A(m)φ^A(x).

  2. A CIFS A is homogeneous CIFS with B, if for all m,x S, we have

    1. ηA(m)ηB(x) if and only if φA(m)φB(x),

    2. η^A(m)η^B(x) if and only if φ^A(m)φ^B(x).

Throughout this paper we use CIFS as homogeneous CIFS.

Definition 2.10.

[27] Let A={(m,ψA(m),ψ^A(m))} be a intuitionistic fuzzy subset of S. Then the π-intuitionistic fuzzy subset Aπ is defined as

Aπ={(m,ψAπ(m),ψ^Aπ(m)):mS},
where ψA(m)=2πψA(m) and ψ^A(m)=2πψ^A(m) be membership function and non-membership function, respectively for all mS. For convenience, we shall write π-IFS for π-intuitionistic fuzzy subset.

Definition 2.11.

[27] A π-IFS Aπ of ring S is called π-fuzzy subring (πFSR) of S, for all m,nS, if

  1. ψAπ(mn)min{ψAπ(m),ψAπ(n)},

  2. ψAπ(mn)min{ψAπ(m),ψAπ(n)},

  3. ψ^Aπ(mn)max{ψ^Aπ(m),ψ^Aπ(n)},

  4. ψ^Aπ(mn)max{ψ^Aπ(m),ψ^Aπ(n)}.

In this paper, we write π-intutionistic fuzzy subring as π-IFSR.

Theorem 2.12.

[27] A π-IFS Aπ of ring S is a π-IFSR if and only if A is Intuitionistic fuzzy subrings (IFSR).

Definition 2.13.

[27] A CIFS A=(θA(m),θ^A(m)) of ring S is called a complex intuitionistic fuzzy subring, for all m,nS, if

  1. θA(mn)min{θA(m),θA(n)},

  2. θA(mn)min{θA(m),θA(n)},

  3. θ^A(mn)max{θ^A(m),θ^A(n)},

  4. θ^A(mn)max{θ^A(m),θ^A(n)}.

For convenience, we shall use complex intuitionistic fuzzy subrings (CIFSR) for complex intuitionistic fuzzy subring.

Definition 2.14.

[27] Let A be a CIFS of S. For r[0,1] and t[0,2π] the level subset of CIFS is defined by

A(r,t)(r^,t^)(m)={mP:ηA(m)r,φA(m)t,η^A(m)r^,φ^At^}.

For t=0, we obtain the level subset Arr^={mP:ηA(m)r,η^A(m)r^} and for r=0, we obtain the level subset Att^={mP:φA(m)t,φ^At^}.

Definition 2.15.

[27] Let f:SR be a ring homomorphism. Let A and B be two CIFSR of ring S and R, respectively, for all xS, mR. Then the sets E={(m,f(ηA)(m),f(η^A))(m)} and F={(x,f1(θB)(x),f1(θ^B)(x))} are called image of A and preimage of B, respectively, where

f(θA)(m)=sup{θA(x),iff(x)=m},f1ϕ0,otherwise
f(θ^A)(m)=inf{θ^A(x),iff(x)=m},f1ϕ1,otherwise
f1(θB)(x)=θB(f(x),
f1(θ^B)(x)=θ^B(f(x).

3. PROPERTIES OF THE DIRECT PRODUCT OF COMPLEX INTUITIONISTIC FUZZY SUBRINGS

In this section, we use the concept of CIFS to define direct product of CIFS. We prove that direct product of two CIFSR is CIFSR and investigate their properties.

Definition 3.1.

Let A and B be any two π-intuitionistic fuzzy sets of sets S, for all mS. Then the following operation are defined as:

  1. (AπBπ)(m)={(m,ψAπBπ(m),ψ^AπBπ(m))}, where ψAπBπ(m)=min{ψAπ(m),ψBπ(m)} and ψ^AπBπ(m)=max{ψ^Aπ(m),ψ^Bπ(m)}.

  2. (AπBπ)(m)={(m,ψAπBπ(m),ψ^AπBπ(m))}, where ψAπBπ(m)=max{ψAπ(m),ψBπ(m)} and ψ^AπBπ(m)=min{ψ^Aπ(m),ψ^Bπ(m)}.

Definition 3.2.

Let A and B be two π-intuitionistic fuzzy sets of sets S1 and S1, respectively. The Cartesian product of π-intuitionistic fuzzy sets A and B is defined as

(Aπ×Bπ)(m,n)={((m×n),ψAπ×Bπ(m,n),ψ^Aπ×Bπ(m,n))}
for all mS1, nS2.

Remark 3.3.

Let A and B be two π-IFSR of sets S1 and S2, respectively. Then Aπ×Bπ is intuitionistic π-fuzzy subring of S1×S2.

Definition 3.4.

[20] Let A and B be two CIFS of sets S1 and S1. The Cartesian product of CIFS A and B is defined by a function

A×B={((m,n),θA×B(m,n),θ^A×B(m,n))},θA×B(m,n)=ηA×B(m,n)eiφA×B(m,n)=min{ηA(m),ηB(n)}eimin{φA(m),φB(n)},θ^A×B(m,n)=η^A×B(m,n)eiφ^A×B(m,n)=max{η^A(m),η^B(n)}eimax{φ^A(m),φ^B(n)}.

For sake of simplicity, throughout this paper we shall use θA×B(m,n)=ηA×B(m,n)eiφA×B(m,n) and θC×D(m,n)=ηC×D(m,n)eiφC×D(m,n) for the membership function of Cartesian product of CIFS A×B and C×D, respectively, and θ^A×B(m,n)=η^A×B(m,n)eiφ^A×B(m,n) and θ^C×D(m,n)=η^C×D(m,n)eiφ^C×D(m,n), for the nonmembership function of Cartesian product of CIFS A×B and C×D, respectively.

Theorem 3.5.

Let A and B be to CIFSR of S1 and S2, respectively. Then A×B is CIFSR of S1×S2.

Proof.

Let m,xS1 and n,yS2 be an elements. Then (m,n),(x,y)S1×S2. Consider

θA×B((m,n)(x,y))=θA×B(mx,ny)=ηA×B(mx,ny)eiϕA×B(mx,ny)=min{ηA(mx),ηB(ny)}eimin{ϕA(mx),ϕB(ny)}=min{ηA(mx)eiϕA(mx),ηB(ny)eiϕB(ny)}=min{θA(mx),θB(ny)}min{min{θA(m),θA(x)},min{θB(n),θB(y)}}=min{min{θA(m),θB(n)},min{θA(x),θB(y)}}θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}.
Further,θA×B((m,n)(x,y))=θA×B(mx,ny)=ηA×B(mx,ny)eiϕA×B(mx,ny)=min{ηA(mx),ηB(ny)}eimin{ϕA(mx),ϕB(ny)}=min{ηA(mx)eiϕA(mx),ηB(ny)eiϕA(ny)}=min{θA(mx),θB(ny)}min{min{θA(m),θA(x)},min{θB(n),θB(y)}}Consequently,θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}.
Moreover,θ^A×B((m,n)(x,y))=θ^A×B((mx),(ny))=η^A×B(mx,ny)eiϕ^A×B(mx,ny)=max{η^A(mx),η^B(ny)}eimax{ϕ^A(mx),ϕ^B(ny)}=max{η^A(mx)eiϕ^A(mx),η^B(ny)eiϕ^A(ny)}=max{θ^A(mx),θ^B(ny)}max{max{θ^A(m),θ^A(x)},max{θ^B(n),θ^B(y)}}=max{max{θ^A(m),θ^B(n)},max{θ^A(x),θ^B(y)}}.

As a result, θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}.

Further,θ^A×B((m,n)(x,y))=θ^A×B(mx,ny)=η^A×B(mx,ny)eiϕ^A×B(mx,ny)=max{η^A(mx),η^B(ny)}eimax{ϕ^A(mx),ϕ^B(ny)}=max{η^A(mx)eiϕ^A(mx),η^B(ny)eiϕ^A(ny)}=max{θ^A(mx),θ^B(ny)}max{max{θ^A(m),θ^A(x)},max{θ^B(n),θ^B(y)}}=max{max{θ^A(m),θ^B(n),max{θ^A(x)},θ^B(y)}}θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}.

Thus concluded the proof.

Corollary 3.6.

Let A1,A2An be CIFSR of S1,S2,Sn, respectively. Then A1×A2××An is CIFSR of S1×S2××Sn.

Remark 3.7.

Let A and B be two CIFS of S1 and S2, respectively and A×B be CIFSR of S1×S2. Then, it not compulsory both A and B should be CIFSR of S1 and S2, respectively.

Example 3.8.

Let Z¯2=0,1 and S=e,a,b,c be two rings. Here S is ring of 2×2 matrices over Z¯2 with second row has zero entries, where e=0000,a=0100, b=1000,c=1100.

Z¯2×S={0,e,0,a,0,b,0,c,1,e,1,a,1,b,1,c}. Then two CIFS A and B is defined by

θA=0,0.2eiπ12,1,0.1eiπ15,θ^A=0,0.55eiπ6,1,0.7eiπ3,θB=e,0.3eiπ3,a,0.45eiπ2,(b,0.33eiπ3),(c,0.4eiπ),θ^B=e,0.24eiπ8,a,0.2eiπ10,(b,0.1eiπ9),(c,0.23eiπ6).

Therefore,

θA×B(x)=0.2eiπ12,forallm0,e,0,a,0,b,0,c0.1eiπ15,forallm1,e,1,a,1,b,1,cθ^A×B(x)=0.55eiπ6,forallx0,e,0,a,0,b,0,c0.7eiπ3,forallx1,e,1,a,1,b,1,c

Here, A×B is CIFSR of S1×S2 and A is CIFSR of B. But B is not a CIFSR of S2 because (B)0.4,π2.23,π6=a,c is not a subring.

Remark 3.9.

Let A×B be two CIFSR of ring S1×S2. Then ηA×B0,0ηA×Bm,n,φA×B0,0φA×Bm,n and η^A×B0,0η^A×Bm,n, φ^A×B0,0φ^A×Bm,n, for all mS1,forall,nS2. Where 0 and 0 are identities of S1 and S2, respectively.

Theorem 3.10.

Let A and B be two CIFS of rings S1 and S2, respectively. If A×B is a CIFSR of S1×S2, then at least one of the following assertions must be hold.

  1. ηA0ηBn, φA0φBn, η^A(0)η^Bn and φ^A0φ^Bn,forallnS2,

  2. ηB(0)ηAm, φB0φAm,η^B(0)η^Am and φ^B0φ^Am,forallmS1.

where 0 and 0 are identities of S1 and S2, respectively.

Proof.

Let A×B be a CIFSR of S1×S2. On contrary, suppose that the assertions (1) and (2) do not hold. Then there exist mS1 and nS2 such that

  1. ηA0ηBn, φA0φBn, η^A(0)η^Bn and φ^A0φ^Bn,forallnS2

  2. ηB(0)ηAm, φB0φAm,η^B(0)η^Am and φ^B0φ^Am,forallmS1

Consider,θA×B(m,n)=min{ηA(m),ηB(n)}eimin{φA(m),φB(n)}min{ηA(0),ηB(0)}eimin{φA(0),φB(0)}θA×B(m,n)θA×B(0,0)And,θ^A×B(m,n)=max{ηA(m),η^B(n)}eimax{φ^A(m),φB(n)}max{η^A(0),η^B(0)}eimax{φ^A(0),φ^B(0)}θ^A×B(m,n)θ^A×B(0,0).

But A×B is CIFSR. Hence, at least one of the following assertions must be hold:

  1. ηA0ηBn, φA0φBn, η^A(0)η^Bn and φ^A0φ^Bn,forallnS2

  2. ηB(0)ηAm, φB0φAm,η^B(0)η^Am and φ^B0φ^Am,forallmS1

Theorem 3.11.

Let A and B CIFS of S1 and S2 such that ηB(0)ηA(m), φB0φAm,η^B(0)η^A(m) and φ^B(0)φ^A(m) for all mS1 and 0 is identity of S2. If A×B is CIFSR of S1×S2, then A is CIFSR of S1.

Proof.

Let m,0,(x,0) be elements of S1×S2. By given condition ηB(0)ηA(m) and φB(0)φA(m), η^B(0)η^A(m) and φ^B(0)φ^A(m) for all m,xS1 and 0S2.

ConsiderθA(mx)=ηA(mx)eiφA(mx)=minηA(mx)eiφA(mx),ηB(00)eiφB(00)={ηA×B((m,0)(x,0))}ei{φA×B((m,0)(x,0))}min{ηA×B(m,0),ηA×B(x,0)}eimin{φA×B(m,0),φA×B(x,0)}=minmin{ηA(m),ηB(0)},min{ηA(x),ηB(0)}×eimin{min{φA(m),φB(0)},min{φA(x),φB(0)}}=minmin{ηA(m),ηA(m)},min{ηA(x),ηA(x)}×eimin{min{ηA(m),ηA(m)},min{ηA(x),ηA(x)}}=min{ηA(m),ηA(x)}eimin{φA(m),φA(x)}=min{θA(m),θA(x)}.Thus,θA(mx)min{θA(m),θA(x)}.
Moreover,θAmx=ηA(mx)eiφA(mx)=minηA(mx)eiφA(mx),ηB(00)eiφB(00)={ηA×B((m,0)(x,0))}ei{φA×B((m,0)(x,0))}min{ηA×B(m,0),ηA×B(x,0)}eimin{φA×B(m,0),φA×B(x,0)}=minmin{ηA(m),ηB(0)},min{ηA(x),ηB(0)}×eimin{min{φA(m),φB(0)},min{φA(x),φB(0)}}=min{min{ηA(m),ηA(m)},min{ηA(x),ηA(x)}}×eimin{min{ηA(m),ηA(m)},min{ηA(x),ηA(x)}}=min{ηA(m),ηA(x)}eimin{φA(m),φA(x)}=min{θA(m),θA(x)}.Thus,θA(mx)min{θA(m),θA(x)}

On the other hand, we have

θ^A(mx)=η^A(mx)eiφ^A(mx)=maxη^A(mx)eiφ^A(mx),η^B(00)eiφ^B(00)={η^A×B((m,0)(x,0))}ei{φ^A×B((m,0)(x,0))}max{η^A×B(m,0),η^A×B(x,0)}eimax{φ^A×B(m,0),φ^A×B(x,0)}=maxmax{η^A(m),η^B(0)},max{η^A(x),η^B(0)}×eimax{max{φ^A(m),φ^B(0)},max{φ^A(x),φ^B(0)}}=maxmax{η^A(m),η^A(m)},max{η^A(x),η^A(x)}×eimax{max{η^A(m),η^A(m)},max{η^A(x),η^A(x)}}=max{η^A(m),η^A(x)}eimax{φ^A(m),φ^A(x)}=max{θ^A(m),θ^A(x)}.As a result,θ^A(mx)max{θ^A(m),θA(x)}θ^A(mx)=η^A(mx)eiφ^A(mx)=maxη^A(mx)eiφ^A(mx),η^B(00)eiφ^B(00)={η^A×B((m,0)(x,0))}ei{φ^A×B((m,0)(x,0))}max{η^A×B(m,0),η^A×B(x,0)}eimax{φ^A×B(m,0),φ^A×B(x,0)}=maxmax{η^A(m),η^B(0)},max{η^A(x),η^B(0)}×eimax{max{φ^A(m),φ^B(0)},max{φ^A(x),φ^B(0)}}=maxmax{η^A(m),η^A(m)},max{η^A(x),η^A(x)}×eimax{max{η^A(m),η^A(m)},max{η^A(x),η^A(x)}}=max{η^A(m),η^A(x)}eimax{φ^A(m),φ^A(x)}=max{θ^A(m),θ^A(x)}.

Consequently, θ^A(mx)max{θ^A(m),θA(x)}. Hence, proved our claim.

Theorem 3.12.

Let A and B two CIFS of S1 and S2 such that ηA(0)ηB(n), φA0φBn,η^A(0)η^B(n) and φ^A(0)φ^B(n) for all nS2 and e is identity of S1. If A×B is CIFSR of S1×S2, then B is CIFSR of S2.

Proof.

Similar as Theorem 3.11.

Corollary 3.13.

Let A and B two CIFS of S1 and S2, respectively. If A×B is CIFSR of S1×S2, then A is a CIFSR of S1 or B is a CIFSR of S2.

Theorem 3.14.

Let A×B be a CIFS of ring S1×S2. Then A×B is a CIFSR of S1×S2 if and only if:

  1. The fuzzy set A×B¯=m,n,ηA×Bm,n,η^A×Bm,n:m,nS1×S2,ηA×Bm,n,η^A×Bm,n[0,1] is an IFSR.

  2. The π-fuzzy set A×B̲={m,n,φA×Bm,n,φ^A×Bm,n,:m,nS1×S2,φA×Bm,n,φ^A×B m,n[0,2π]} is a π-IFSR.

Proof.

Suppose that A×B is a CIFSR and m,n,(x,y)S1×S2. Then we have

ηA×B(m,n(x,y))eiφA×B((m,n)(x,y))=θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}=min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}(AsA×Bis homogeneous)ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)},φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)}and,ηA×B((m,n)(x,y))eiφA×B((m,n)(x,y))=θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}=min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}(By using the homogeneous property)ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)},and,φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)}Further,η^A×B((m,n)(x,y))eiφ^A×B((m,n)(x,y))=θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}=maxη^A×B(m,n),η^A×B(x,y)eimax{φ^A×B(m,n),φ^A×B(x,y)}(AsA×Bis homogeneous)η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)}
Moreover,η^A×B((m,n)(x,y))eiφ^A×B((m,n)(x,y))=θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}=max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}(AsA×Bis homogeneous)η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)}

Consequently, A×B¯ is IFSR and A×B̲ is π-IFSR.

Conversely, suppose that A×B¯ and A×B̲ is IFSR and π-IFSR, respectively. Then we have

ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)}φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)}φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)}φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)}ConsiderθA×B((m,n)(x,y))=ηA×B((m,n)(x,y))eiφA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}=min{θA×B(m,n),θA×B(x,y)}Also,θA×B((m,n)(x,y))=ηA×B((m,n)(x,y))eiφA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}=min{θA×B(m,n),θA×B(x,y)}Moreover,θ^A×B((m,n)(x,y))=η^A×B((m,n)(x,y))eiφ^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}=max{θ^A×B(m,n),θ^A×B(x,y)}Also,θ^A×B((m,n)(x,y))=η^A×B((m,n)(x,y))eiφ^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}=max{θ^A×B(m,n),θ^A×B(x,y)}.

Hence, A×B is CIFSR. Thus concluded the proof.

4. PROPERTIES OF LEVEL SUBSETS OF DIRECT PRODUCT OF COMPLEX INTUITIONISTIC FUZZY SUBRING

This section is devoted to study the properties of level subrings of direct product of CIFSR. We initiate the concept level subset of the direct product of CIFSR and prove various impactful results of this phenomena.

Definition 4.1.

Let A×B be Cartesian product of CIFS A and B. Then for r0,1,andt[0,2π] the level subset of CIFS A×B of S1×S2 is defined by

A×Br,tr^,t^m,n=m,nS1×S2:ηAm,nr,φAm,nt,η^Am,nr^,φ^Am,nt^,

For t=t̂=0, we obtain the level subset A×Brr̂m,n=m,nP:ηAm,nr,η^Am,nr̂, and for r=r̂=0, then we obtain the level subset A×Btt̂m,n=m,nS1×S2:,φAm,nt,φ^Am,nt̂.

Theorem 4.2.

Let A and B be two CIFS of rings S1 and S2. Then A×Br,tr̂,t̂=Ar,tr̂,t̂×Br,tr̂,t̂.

Proof.

Consider (m,n)A(r,t)(r̂,t̂)×B(r,t)(r̂,t̂)

mA(r,t)(r^,t^)andnB(r,t)(r^,t^)ηA(m)r,φA(m)t,η^A(m)r^,φ^A(m)t^,andηB(n)r,φB(n)t,η^A(n)r^,φ^A(n)t^min{ηA(m),ηB(n)}r,max{η^A(m),η^B(n)}r^min{φA(m),φB(n)}t,max{η^A(m),η^B(n)}t^ηA×B(m,n)r,φA×B(m,n)t,andη^A×B(m,n)r^φ^A×B(m,n)t^(m,n)(A×B)(r,t)(r^,t^)

Hence, (A×B)(r,t)(r̂,t̂)=A(r,t)(r̂,t̂)×B(r,t)(r̂,t̂).

Theorem 4.3.

Let A×B be CIFSR of ring S1×S2. Then (A×B)(r,t)(r̂,t̂) is a subring of ring S1×S2, for all r,r̂[0,1], and t,t̂[0,2π], where ηA(0,0)r,φA(0,0)t, η^A(0,0)r̂, and φ^A(0,0)t̂ also (0,0) is identity element of S1×S2.

Proof.

Note that (A×B)(r,t)(r̂,t̂) is nonempty, as (0,0)(A×B)(r,t)(r̂,t̂). Let (m,n),(x,y)(A×B)(r,t)(r̂,t̂) be any two elements. Then

ηA×B(m,n)r,φA×B(m,n)t,η^A×B(m,n)r^φ^A×B(m,n)t^,ηA×B(x,y)r,φA×B(x,y)t,η^A×B(x,y)ConsiderηA×B((m,n)(x,y))r^φ^A×B(x,y)t^.eiφA×B((m,n)(x,y))=θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}
=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}=min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}(AsA×Bis homogeneous)ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}=min{r,r}=r.φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)}=min{t,t}=t.Moreover,η^A×B((m,n)(x,y))eiφ^A×B((m,n)(x,y))=θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}=max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}.(By homogeneous property)η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}=max{r,r}=r,φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)}=max{t,t}=t.Implies that(m,n)(x,y)(A×B)(r,t)(r^,t^).Also,ηA×B((m,n)(x,y))eiφA×B((m,n)(x,y))=θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}=min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}(By homogeneous property)ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}=min{r,r}=r,and,φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)}=min{t,t}=t,η^A×B((m,n)(x,y))eiφ^A×B((m,n)(x,y))=θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}=max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}.(AsA×Bis homogeneous)η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}=max{r,r}=r,and,φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)}=max{t,t}=t.

Implies that (m,n)(x,y)(A×B)(r,t)(r̂,t̂). Hence (A×B)(r,t)(r̂,t̂) is subring.

Theorem 4.4.

Let A×B(r,t)(r̂,t̂) be a subring of ring S1×S2, then A×B is CIFSR of S1×S2, for all r[0,1], and t[0,2π], where ηA(0,0)r,φA(0,0)t, η^A(0,0)r̂,φ^A(0,0)t̂, also (0,0) is identity element of S1×S2.

Proof.

Assume that min{ηA×B(m,n),ηA×B(x,y)}=r, min{φA×B(m,n),φA×B(x,y)}=t, max{η^A×B(m,n),η^A×B(x,y)}=r̂ and max{φ^A×B(m,n),φ^A×B(x,y)}=t̂. Then we have

ηA×B(m,n)r,φA×B(m,n)t,η^A×B(m,n)r^,φ^A×B(m,n)t^,ηA×B(x,y)r,φA×B(x,y)t,η^A×B(x,y)r^andφ^A×B(x,y)t^.This implies that(m,n)(A×B)(r,t)(r^,t^)and(x,y)(A×B)(r,t)(r^,t^).

As (A×B)(r,t)(r̂,t̂) is subring. So (m,n)(x,y),(m,n)(x,y)(A×B)(r,t)(r̂,t̂). Then we have

ηA×B((m,n)(x,y))r,φA×B((m,n)(x,y))t,ηA×B((m,n)(x,y))r,φA×B((m,n)(x,y))t,η^A×B((m,n)(x,y))r̂,φ^A×B((m,n)(x,y))t̂,η^A×B((m,n)(x,y))r̂,φ^A×B((m,n)(x,y))t̂.Implies thatηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)},ηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)},φA×B((m,n)(x,y))min{φA×B(m,n),φA×B(x,y)},η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)},φ^A×B((m,n)(x,y)max{φ^A×B(m,n),φ^A×B(x,y)},η^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)},φ^A×B((m,n)(x,y))max{φ^A×B(m,n),φ^A×B(x,y)},ConsiderθA×B((m,n)(x,y))=ηA×B((m,n)(x,y))eiηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}Further,θA×B((m,n)(x,y))=ηA×B((m,n)(x,y))eiηA×B((m,n)(x,y))min{ηA×B(m,n),ηA×B(x,y)}eimin{φA×B(m,n),φA×B(x,y)}=min{ηA×B(m,n)eiφA×B(m,n),ηA×B(x,y)eiφA×B(x,y)}θA×B((m,n)(x,y))min{θA×B(m,n),θA×B(x,y)}Moreover,θ^A×B((m,n)(x,y))=η^A×B((m,n)(x,y))eiη^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}Also,θ^A×B((m,n)(x,y))=η^A×B((m,n)(x,y))eiη^A×B((m,n)(x,y))max{η^A×B(m,n),η^A×B(x,y)}eimax{φ^A×B(m,n),φ^A×B(x,y)}=max{η^A×B(m,n)eiφ^A×B(m,n),η^A×B(x,y)eiφ^A×B(x,y)}θ^A×B((m,n)(x,y))max{θ^A×B(m,n),θ^A×B(x,y)}.

Corollary 4.5.

Let A×B be a CIFSR of S1×S2, then the level subsets (A×B)rr̂ and (A×B)tt̂ is a subring of ring S1×S2, for all r,r̂[0,1], and t,t̂[0,2π], where ηA(0,0)r,φA(0,0)t, η^A×B(m,n)r̂, and φ^A×B(m,n)t̂ and (0,0) is identity element of S1×S2.

5. HOMOMORPHISM OF DIRECT PRODUCT COMPLEX INTUITIONISTIC FUZZY SUBRING

In this section, we define the homomorphic image and preimage of the direct product of CIFSR. We prove some results of the direct product of CIFSR under ring homomorphism.

Definition 5.1.

Let f:S1×S2R1×R2 be a ring homomorphism form S1×S2 to R1×R2. Let A×B and C×D be two CIFSR of rings S1×S2 and R1×R2, respectively. For all (x,y)S1×S2 and for all (m,n)R1×R2. The set

fA×B=m,n,fθA×Bm,n,fθ^A×Bm,n is said to be image of A×B, where

fθA×Bm,n=supθA×Bx,y,iffx,y=m,n,f1(m,n)0,otherwise
fθ^A×Bm,n=infθ^A×Bx,y,iffx,y=m,n,f1(m,n)1,

The set f1B1×B2=x,y,f1θC×Dx,y,f1θ^C×Dx,y is said to be preimage of C×D, where

f1θC×Dx,y=θC×Dfx,y,
f1θ^C×Dx,y=θC×Dfx,y.

Theorem 5.2.

[9] f:SR be ring homomorphism from S to R. Let A be IFSR of S and B be IFSR of R. Then f(A) is IFSR of R and f1(B) is IFSR of S.

Lemma 5.3.

Let f:S1×S2R1×R2 be a homomorphism from group S1×S2 to group R1×R2. Let A×B and C×D be two CIFSR. Then

  1. fθA×Bm,n=fηA×Bm,neifφA×Bm,n,forall(m,n)R1×R2

  2. fθ^A×Bm,n=fη^A×Bm,neifφ^A×Bm,n

  3. f1θC×Dx,y=f1ηC×Dx,yeif1φC×Dx,y,forall(x,y)S1×S2

  4. f1θ^C×D(x,y)=f1η^C×Dx,yeif1φ^C×Dx,y

Proof.

  1. Considerf(θA×B)(m,n)=max{(θA×B)(x,y),iff(x,y)=(m,n)}=max{(ηA×B)(x,y)eif(φA×B)(x,y),iff(x,y)=(m,n)}=max{(ηA×B)(x,y),iff(x,y)=(m,n)}eimax{(φA×B)(x,y),iff(x,y)=(m,n)}=f(ηA×B)(m,n)eif(φA×B)(m,n).

    Hence, f(θA×B)(m,n)=f(ηA×B)(m,n)eif(φA×B)(m,n).

  2. Suppose thatf(θ^A×B)(m,n)=max{(θ^A×B)(x,y),iff(x,y)=(m,n)}=max{(η^A×B)(x,y)eif(φ^A×B)(x,y),iff(x,y)=(m,n)}=max{(η^A×B)(x,y),iff(x,y)=(m,n)}eimax{(φ^A×B)(x,y),iff(x,y)=(m,n)}=f(η^A×B)(m,n)eif(φ^A×B)(m,n).

    As a result, f(θ^A×B)(m,n)=f(η^A×B)(m,n)eif(φ^A×B)(m,n).

  3. Assume that,f1(θC×D)(x,y)=θC×D(f(x,y))=ηC×D(f(x,y))eiφC×D(f(x,y))=f1(ηC×D)(x,y)×eif1(φC×D)(x,y).

    Consequently, f1(θC×D)(x,y)=f1(ηC×D)(x,y)eif1(φC×D)(x,y).

  4. Consider,f1(θ^C×D)(x,y)=θ^C×D(f(x,y))=η^C×D(f(x,y))eiφ^C×D(f(x,y))=f1(η^C×D)(x,y)×eif1(φ^C×D)(x,y).

    Consequently, f1(θ^C×D)(x,y)=f1(η^C×D)(x,y)eif1(φ^C×D)(x,y).

Theorem 5.4.

Let f:S1×S2R1×R2 be a homomorphism from ring S1×S2 to ring R1×R2. Let A×B be CIFSR of S1×S2. Then f(A×B) is CIFSR of R1×R2.

Proof.

Obviously, {((p,q),ηA×B(p,q),η^A×B(p,q)),(p,q)S1×S2} and {((p,q),φA×B(p,q),φ^A×B(p,q),(p,q)S1×S2)} are IFSR and π-IFSR, respectively. From Theorem 2.9 and Theorem 5.2 the homomorphic image of {((p,q),ηA×B(p,q),η^A×B(p,q)),(p,q)S1×S2} and {((p,q),φA×B(p,q),φ^A×B(p,q),(p,q)S1×S2)} are IFSR and π-IFSR, respectively, for all (m,n),(x,y)R1×R2. Then we have

f(ηA×B)((m,n)(x,y))min{f(ηA×B)(m,n),f(ηA×B)(x,y)},f(ηA×B)((m,n)(x,y))min{f(ηA×B)(m,n),f(ηA×B)(x,y)},f(η^A×B)((m,n)(x,y))max{f(η^A×B)(m,n),f(η^A×B)(x,y)},f(η^A×B)((m,n)(x,y))max{f(η^A×B)(m,n),f(η^A×B)(x,y)},f(φA×B)((m,n)(x,y))min{f(φA×B)(m,n),f(φA×B)(x,y)},f(φA×B)((m,n)(x,y))min{f(φA×B)(m,n),f(φA×B)(x,y)},f(φ^A×B)((m,n)(x,y))max{f(φ^A×B)(m,n),f(φ^A×B)(x,y)},f(φ^A×B)((m,n)(x,y))max{f(φ^A×B)(m,n),f(φ^A×B)(x,y)},From Lemma 5.3,we havef(θA×B)((m,n)(x,y))=f(ηA×B)((m,n)(x,y))eif(φA×B)((m,n)(x,y)),forall(m,n),(x,y)R1×R2min{f(ηA×B)(m,n),f(ηA×B)(x,y)}ei{f(φA×B)(m,n),f(φA×B)(x,y)}=min{f(ηA×B)(m,n)eif(φA×B)(m,n),f(ηA×B)(y2)eif(φA×B)(x,y)}=min{f(θA×B)(m,n),f(θA×B)(x,y)}Consequently,f(θA×B)((m,n)(x,y))min{f(θA×B)(m,n),f(θA×B)(x,y)}Further,f(θA×B)((m,n)(x,y))=f(ηA×B)((m,n)(x,y))eif(φA×B)((m,n)(x,y)),forall(m,n),(x,y)R1×R2min{f(ηA×B)(m,n),f(ηA×B)(x,y)}ei{f(φA×B)(m,n),f(φA×B)(x,y)}=min{f(ηA×B)(m,n)eif(φA×B)(m,n),f(ηA×B)(y2)eif(φA×B)(x,y)}=min{f(θA×B)(m,n),f(θA×B)(x,y)}.As result,f(θA×B)((m,n)(x,y))min{f(θA×B)(m,n),f(θA×B)(x,y)}.In the view of Lemma 5.3,we know thatf(θ^A×B)((m,n)(x,y))=f(η^A×B)((m,n)(x,y))eif(φ^A×B)((m,n)(x,y)),(m,n),(x,y)R1×R2max{f(η^A×B)(m,n),f(η^A×B)(x,y)}ei{f(φ^A×B)(m,n),f(φ^A×B)(x,y)}=max{f(η^A×B)(m,n)eif(φ^A×B)(m,n),f(η^A×B)(y2)eif(φ^A×B)(x,y)}=max{f(θ^A×B)(m,n),f(θ^A×B)(x,y)}Consequently,f(θ^A×B)((m,n)(x,y))max{f(θ^A×B)(m,n),f(θ^A×B)(x,y)}.Moreover,f(θ^A×B)((m,n)(x,y))=f(η^A×B)((m,n)(x,y))eif(φ^A×B)((m,n)(x,y)),(m,n),(x,y)R1×R2max{f(η^A×B)(m,n),f(η^A×B)(x,y)}ei{f(φ^A×B)(m,n),f(φ^A×B)(x,y)}=max{f(η^A×B)(m,n)eif(φ^A×B)(m,n),f(η^A×B)(y2)eif(φ^A×B)(x,y)}=max{f(θ^A×B)(m,n),f(θ^A×B)(x,y)}Therefore,f(θ^A×B)((m,n)(x,y))max{f(θ^A×B)(m,n),f(θ^A×B)(x,y)}.

This establishes the proof.

Theorem 5.5.

Let f:S1×S2R1×R2 be a homomorphism from ring S1×S2 to ring R1×R2. Let C×D be CIFSR of R1×R2. Then f1(C×D) is CIFSR of S1×S2.

Proof.

Obviously, {((p,q),ηC×D(p,q),η^C×D(p,q)),(p,q)R1×R2} and {((p,q),φC×D(p,q),φ^C×D(p,q),(p,q)R1×R2)} are IFSR and π-IFSR respectively. Then from Theorems 2.9 and 5.2 the inverse image of {((p,q),ηC×D(p,q),η^C×D(p,q)),(p,q)R1×R2} and {((p,q),φC×D(p,q),φ^C×D(p,q),(p,q)R1×R2)} are IFSR and π-IFSR, respectively, for all (m,n),(x,y)S1×S2. Then we have

f1(ηC×D)((m,n)(x,y))min{f1(ηC×D)(m,n),f1(ηC×D)(x,y)},f1(ηC×D)((m,n)(x,y))min{f1(ηC×D)(m,n),f1(ηC×D)(x,y)},f1(η^C×D)((m,n)(x,y))max{f1(η^C×D)(m,n),f1(η^C×D)(x,y)},f1(η^C×D)((m,n)(x,y))max{f1(η^C×D)(m,n),f1(η^C×D)(x,y)},f1(φC×D)((m,n)(x,y))min{f1(φC×D)(m,n),f1(φC×D)(x,y)},f1(φC×D)((m,n)(x,y))min{f1(φC×D)(m,n),f1(φC×D)(x,y)},f1(φ^C×D)((m,n)(x,y))max{f1(φ^C×D)(m,n),f1(φ^C×D)(x,y)},f1(φ^C×D)((m,n)(x,y))max{f1(φ^C×D)(m,n),f1(φ^C×D)(x,y)}.
By Lemma 5.3(3), we havef1(θC×D)((m,n)(x,y))=f1(ηC×D)((m,n)(x,y))eif1(φC×D)((m,n)(x,y)),forall(m,n),(x,y)S1×S2min{f1(ηC×D)(m,n),f1(ηC×D)(x,y)eif1(φC×D)(m,n),f1(φC×D)(x,y)=min{f1(ηC×D)(m,n)eif1(φC×D)(m,n),f1(ηC×D)(x,y)eif1(φC×D)(x,y)min{f1(θC×D)(m,n),f1(θC×D)(x,y)}.Therefore,f1(θC×D)((m,n)(x,y))min{f1(θC×D)(m,n),f1(θC×D)(x,y)}.

Further, f1(θC×D)((m,n)(x,y))=f1(ηC×D)((m,n)(x,y))eif1(φC×D)((m,n)(x,y)),forall(m,n),(x,y)S1×S2.

min{f1(ηC×D)(m,n),f1(ηC×D)(x,y)}ei{f1(φC×D)(m,n),f1(φC×D)(x,y)}=min{f1(ηC×D)(m,n)eif1(φC×D)(m,n),f1(ηC×D)(x,y)eif1(φC×D)(x,y)}=min{f1(θC×D)(m,n),f1(θC×D)(x,y)}.Therefore,f1(θC×D)((m,n)(x,y))min{f1(θC×D)(m,n),f1(θC×D)(x,y)}

Consider f1(θ^C×D)((m,n)(x,y))=f1(η^C×D)((m,n)(x,y))eif1(φ^C×D)((m,n)(x,y)),forall(m,n),(x,y)S1×S2

max{f1(η^C×D)(m,n),f1(η^C×D)(x,y)}ei{f1(φ^C×D)(m,n),f1(φ^C×D)(x,y)}=max{f1(η^C×D)(m,n)eif1(φ^C×D)(m,n),f1(η^C×D)(x,y)eif1(φ^C×D)(x,y)}=max{f1(θ^C×D)(m,n),f1(θ^C×D)(x,y)}

Therefore, f1(θ^C×D)((m,n)(x,y))maxf1(θ^C×D)(m,n),f1(θ^C×D)(x,y). Further, f1(θ^C×D)((m,n)(x,y))

=f1(η^C×D)((m,n)(x,y))eif1(φ^C×D)((m,n)(x,y)),forall(m,n),(x,y)S1×S2max{f1(η^C×D)(m,n),f1(η^C×D)(x,y)}ei{f1(φ^C×D)(m,n),f1(φ^C×D)(x,y)}=max{f1(η^C×D)(m,n)eif1(φ^C×D)(m,n),f1(η^C×D)(x,y)eif1(φ^C×D)(x,y)}=max{f1(θ^C×D)(m,n),f1(θ^C×D)(x,y)}

Consequently, f1(θ^C×D)((m,n)(x,y))max{f1(θ^C×D)(m,n),f1(θ^C×D)(x,y)}. This concluded the proof.

6. CONCLUSION

In this paper, we have introduced direct product of CIFSR and we have proved that the direct product of two CIFSR is CIFSR. We have innovated the concept of level subset of the direct product of two CIFS. We have also explained the some fundamental properties of the level subset of the product of two CIFSR. Moreover, we have investigated that homomorphic image (preimage) of the direct product of CIFSR under ring homomorphism.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

AUTHORS' CONTRIBUTIONS

Conceptualization and Investigation by M. Gulzar and M. Haris Mateen; Validation, Yu-Ming Chu, D. Alghazzawi; Writing original draft, Ghazanfar Abbas; Writing review, editing and Funding, Yu-Ming Chu. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS

The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 61673169).

REFERENCES

4.K.T. Atanassov, Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 1983.
10.K.T. Atanassov, On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
11.R. Biswas, Intuitionistic fuzzy subgroups, Math. Forum, Vol. 10, 1989, pp. 37-46.
15.B. Banerjee and D.K. Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math., Vol. 11, 2003, pp. 139-155.
16.E. Yetkin and N. Olgum, Direct product of fuzzy groups and fuzzy rings, Int. Math. Forum, Vol. 6, 2011, pp. 1005-1015.
17.P. Thirunavukarasu, R. Suresh, and P. Thamilmani, Application of complex fuzzy sets, J. Appl. Math., Vol. 6, 2013, pp. 5-22.
18.F.A. Azam, A.A. Mamun, and F. Nasrin, Anti fuzzy ideal of ring, Ann. Fuzzy Math. Inform., Vol. 25, 2013, pp. 349-360.
26.M.O. Alsarahead and A.G. Ahmad, Complex fuzzy subrings, Int. J. Pure Appl. Math., Vol. 117, 2017, pp. 563-577.
Journal
International Journal of Computational Intelligence Systems
Volume-Issue
14 - 1
Pages
582 - 593
Publication Date
2021/01/15
ISSN (Online)
1875-6883
ISSN (Print)
1875-6891
DOI
10.2991/ijcis.d.210106.001How to use a DOI?
Copyright
© 2021 The Authors. Published by Atlantis Press B.V.
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Muhammad Gulzar
AU  - M. Haris Mateen
AU  - Yu-Ming Chu
AU  - Dilshad Alghazzawi
AU  - Ghazanfar Abbas
PY  - 2021
DA  - 2021/01/15
TI  - Generalized Direct Product of Complex Intuitionistic Fuzzy Subrings
JO  - International Journal of Computational Intelligence Systems
SP  - 582
EP  - 593
VL  - 14
IS  - 1
SN  - 1875-6883
UR  - https://doi.org/10.2991/ijcis.d.210106.001
DO  - 10.2991/ijcis.d.210106.001
ID  - Gulzar2021
ER  -