Journal of Nonlinear Mathematical Physics

Volume 27, Issue 4, September 2020, Pages 664 - 678

Integrability conditions of a weak saddle in generalized Liénard-like complex polynomial differential systems

Authors
Jaume Giné*
Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69; 25001 Lleida, Catalonia, Spain, gine@matematica.udl.cat
Claudia Valls
Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal, cvalls@math.ist.utl.pt
*Corresponding author.
Corresponding Author
Jaume Giné
Received 13 December 2019, Accepted 7 February 2020, Available Online 4 September 2020.
DOI
https://doi.org/10.1080/14029251.2020.1819612How to use a DOI?
Keywords
Integrability problem, weak saddle, Liénard-like complex polynomial differential systems
Abstract

We consider the complex differential system

x˙=x+yf(x),y˙=y+xf(y),
where f is the analytic function f(z)=j=1ajzj with aj ∈ ℂ. This system has a weak saddle at the origin and is a generalization of complex Liénard systems. In this work we study its local analytic integrability.

Copyright
© 2020 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
27 - 4
Pages
664 - 678
Publication Date
2020/09
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
https://doi.org/10.1080/14029251.2020.1819612How to use a DOI?
Copyright
© 2020 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Jaume Giné
AU  - Claudia Valls
PY  - 2020
DA  - 2020/09
TI  - Integrability conditions of a weak saddle in generalized Liénard-like complex polynomial differential systems
JO  - Journal of Nonlinear Mathematical Physics
SP  - 664
EP  - 678
VL  - 27
IS  - 4
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2020.1819612
DO  - https://doi.org/10.1080/14029251.2020.1819612
ID  - Giné2020
ER  -