Modeling research on wheat grain in different quality categories using multilayer support vector machine
- DOI
- 10.2991/iwmecs-15.2015.21How to use a DOI?
- Keywords
- near infrared reflectance; wheat; classification; partial least squares based dimension reduction; support vector machine
- Abstract
Near Infrared Reflectance (NIR) spectroscopy is a ‘green’ nondestructive testing technology and it has been widely used in grain crop analysis. The experimental data were collected using 161 wheat samples from the major wheat-producing area in China. The original spectral data was represented by four characteristic variables extracted by Partial Least Squares based Dimension Reduction (PLSDR). Besides, Mahalanobis distance method, second derivative and SNV were used to preprocess spectra. A two-tier classification model based on SVM algorithm was used to achieve the classification of wheat quality. The experimental results indicated that the two-tier SVM classification model was effective in identifying the quality of wheat grain with the recognition rates of common, strong-gluten, middle-gluten and weak-gluten wheat samples being 93.3%, 87.5%, 72.7% and 92.3%, respectively, and the rejection rates of them being 90.0%, 97.4%, 100.0% and 95.2%, respectively. The model realized rapid and accurate classification of wheat, besides it could be applied to the detection system of wheat quality.
- Copyright
- © 2015, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Guangyan Hui AU - Laijun Sun AU - Shang Gao PY - 2015/10 DA - 2015/10 TI - Modeling research on wheat grain in different quality categories using multilayer support vector machine BT - Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences PB - Atlantis Press SP - 105 EP - 109 SN - 2352-538X UR - https://doi.org/10.2991/iwmecs-15.2015.21 DO - 10.2991/iwmecs-15.2015.21 ID - Hui2015/10 ER -