Journal of Nonlinear Mathematical Physics

Volume 16, Issue Supplement 1, March 2013, Pages 93 - 106

Multipotentialisations and Iterating-Solution Formulae: The Krichever–Novikov Equation

Authors
Norbert Euler, Marianna Euler
Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
Received 26 August 2009, Accepted 26 September 2009, Available Online 7 January 2021.
DOI
https://doi.org/10.1142/S1402925109000340How to use a DOI?
Keywords
Integrable evolution equations in (1+1) dimensions, Auto-Bäcklund transformations, solution generators, potentialisation of evolution equations, conservation laws, Krichever–Novikov equation
Abstract

We derive solution-formulae for the Krichever–Novikov equation by a systematic multipotentialisation of the equation. The formulae are achieved due to the connections of the Krichever–Novikov equations to certain symmetry-integrable 3rd-order evolution equations which admit autopotentialisations.

Copyright
© 2009 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
16 - Supplement 1
Pages
93 - 106
Publication Date
2021/01
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
https://doi.org/10.1142/S1402925109000340How to use a DOI?
Copyright
© 2009 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Norbert Euler
AU  - Marianna Euler
PY  - 2021
DA  - 2021/01
TI  - Multipotentialisations and Iterating-Solution Formulae: The Krichever–Novikov Equation
JO  - Journal of Nonlinear Mathematical Physics
SP  - 93
EP  - 106
VL  - 16
IS  - Supplement 1
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925109000340
DO  - https://doi.org/10.1142/S1402925109000340
ID  - Euler2021
ER  -