Journal of Nonlinear Mathematical Physics

Volume 17, Issue 1, March 2010, Pages 121 - 126

Bernoulli Numbers and Solitons — Revisited

Authors
Grzegorz Rządkowski
Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01 – 815 Warsaw, Poland, g.rzadkowski@uksw.edu.pl
Received 8 July 2009, Accepted 13 September 2009, Available Online 7 January 2021.
DOI
https://doi.org/10.1142/S1402925110000635How to use a DOI?
Keywords
Eulerian numbers, Riccati's equation, Bernoulli numbers, KdV equation, soliton
Abstract

In the present paper we propose a new proof of the Grosset–Veselov formula connecting one-soliton solution of the Korteweg–de Vries equation to the Bernoulli numbers. The approach involves Eulerian numbers and Riccati's differential equation.

Copyright
© 2010 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
17 - 1
Pages
121 - 126
Publication Date
2021/01
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
https://doi.org/10.1142/S1402925110000635How to use a DOI?
Copyright
© 2010 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Grzegorz Rządkowski
PY  - 2021
DA  - 2021/01
TI  - Bernoulli Numbers and Solitons — Revisited
JO  - Journal of Nonlinear Mathematical Physics
SP  - 121
EP  - 126
VL  - 17
IS  - 1
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925110000635
DO  - https://doi.org/10.1142/S1402925110000635
ID  - Rządkowski2021
ER  -