Repetitive Pattern of L(2,1)-Labelling on Sierpinski Graphs
Authors
Yuri C Sagala, Susilo Hariyanto, SRRM Titi Udjiani, M. Rafid Fadil
Corresponding Author
Susilo Hariyanto
Available Online 11 October 2020.
- DOI
- 10.2991/assehr.k.201010.016How to use a DOI?
- Keywords
- L(2,1)-labeling, Sierpinski graphs, repetitive pattern
- Abstract
An L(2,1)-labelling of a graph G is a function f which assigns labels from {0,1,…,λ} to the vertices of G such that vertices at distance two get different labels and adjacent vertices get labels that are at least two apart. Sierpiński graphs S(n,k) generalized the Tower of Hanoi graphs that constructed by copying complete graphs recursively. By Chang-Kuo algorithm, we will show L(2,1)-labelling of Sierpinski graphs and repetitive pattern on it.
- Copyright
- © 2020, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Yuri C Sagala AU - Susilo Hariyanto AU - SRRM Titi Udjiani AU - M. Rafid Fadil PY - 2020 DA - 2020/10/11 TI - Repetitive Pattern of L(2,1)-Labelling on Sierpinski Graphs BT - Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019) PB - Atlantis Press SP - 101 EP - 107 SN - 2352-5398 UR - https://doi.org/10.2991/assehr.k.201010.016 DO - 10.2991/assehr.k.201010.016 ID - Sagala2020 ER -