Clustering Balinese Script Image in Palm Leaf Using Hierarchical K-Means Algorithm
Authors
Anastasia Rita Widiarti*, C. Kuntoro Adikuntoroadi@usd.ac.id
Informatics Department, Faculty of Science and Technology, Sanata Dharma University, Sleman, Indonesia
Corresponding Author
Anastasia Rita Widiarti
Available Online 30 November 2021.
- DOI
- 10.2991/aer.k.211129.009How to use a DOI?
- Keywords
- clustering and hierarchical clustering approach; Balinese Lontar script; hierarchical K-Means algorithm
- Abstract
This paper proposes a combination approach of clustering, a hierarchical clustering to group similar characters of Balinese Lontar script; followed by k-means clustering as a way to identify the group to find-out the right label for members of the group. Based on the optimal value of the silhouette coefficient, the hierarchical clustering method results in 113 groups of Balinese Lontar scripts. Using these 113 groups to compute the initial centroid of each cluster, k-means clustering process is able to correctly group and label 111 scripts out of 198 Balinese Lontar scripts sample.
- Copyright
- © 2021 The Authors. Published by Atlantis Press International B.V.
- Open Access
- This is an open access article under the CC BY-NC license.
Cite this article
TY - CONF AU - Anastasia Rita Widiarti AU - C. Kuntoro Adi PY - 2021 DA - 2021/11/30 TI - Clustering Balinese Script Image in Palm Leaf Using Hierarchical K-Means Algorithm BT - Proceedings of the International Conference on Innovation in Science and Technology (ICIST 2020) PB - Atlantis Press SP - 38 EP - 42 SN - 2352-5401 UR - https://doi.org/10.2991/aer.k.211129.009 DO - 10.2991/aer.k.211129.009 ID - Widiarti2021 ER -