Prototype Construction for Clustering of Point Processes based on Imprecise Synchrony
- DOI
- 10.2991/eusflat.2013.55How to use a DOI?
- Keywords
- clustering prototype distance point process spike train analysis temporal imprecision
- Abstract
We consider the task to cluster realizations of point processes, that is, lists of points in time. Our guiding principle is that two such lists are the more similar, the more (approximately) synchronous points they contain. This task occurs in the analysis of parallel spike trains in neurobiology, where it arises from the desire to detect assemblies of neurons, which are characterized by the synchronous spiking activity they exhibit. While earlier approaches along similar lines employed mainly hierarchical agglomerative clustering, based on distance measures for spike trains, we try to make prototype-based clustering approaches (like (fuzzy-)c-means clustering) applicable by proposing a method to construct cluster prototypes. For this we draw on an idea that is inspired by mountain clustering. In addition, we adapt a method that was originally developed for outlier detection in order to actually single out relevant groups of related realizations of point processes in front of a background of noise, and thus to identify neuron assemblies in parallel spike train data.
- Copyright
- © 2013, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Christian Borgelt AU - Christian Braune PY - 2013/08 DA - 2013/08 TI - Prototype Construction for Clustering of Point Processes based on Imprecise Synchrony BT - Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13) PB - Atlantis Press SP - 387 EP - 394 SN - 1951-6851 UR - https://doi.org/10.2991/eusflat.2013.55 DO - 10.2991/eusflat.2013.55 ID - Borgelt2013/08 ER -