Implementation of Infeasible Kernel-Based Interior-Point Methods for Linearly Constrained Convex Optimization
Authors
L. Wu, K. Li, X.D. Wang, L.H. Shao, A.N. Zhao
Corresponding Author
L. Wu
Available Online July 2015.
- DOI
- 10.2991/eame-15.2015.178How to use a DOI?
- Keywords
- interior-point methods; kernel function; linearly constrained convex optimization; primal-dual methods; polynomial complexity
- Abstract
In this paper, we present the implementation of infeasible kernel-based primal-dual interior-point methods for linearly constrained convex optimization. Numerical results are provided to demonstrate the efficiency of the algorithms.
- Copyright
- © 2015, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - L. Wu AU - K. Li AU - X.D. Wang AU - L.H. Shao AU - A.N. Zhao PY - 2015/07 DA - 2015/07 TI - Implementation of Infeasible Kernel-Based Interior-Point Methods for Linearly Constrained Convex Optimization BT - Proceedings of the 2015 International Conference on Electrical, Automation and Mechanical Engineering PB - Atlantis Press SP - 648 EP - 651 SN - 2352-5401 UR - https://doi.org/10.2991/eame-15.2015.178 DO - 10.2991/eame-15.2015.178 ID - Wu2015/07 ER -