Volume 10, Issue 1, 2017, Pages 627 - 646
Flower Pollination Algorithm for Multimodal Optimization
Authors
Jorge Gálvez1, *, jorge.galvez@cutonala.udg.mx, Erik Cuevas, Omar Avalos
1Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, Mexico
*Corresponding author, Tel +52-33 1378 5900, ext. 27714, jorge.galvez@cutonala.udg.mx
Corresponding Author
Jorge Gálvezjorge.galvez@cutonala.udg.mx
Received 4 August 2016, Accepted 10 January 2017, Available Online 25 January 2017.
- DOI
- 10.2991/ijcis.2017.10.1.42How to use a DOI?
- Keywords
- Flower Pollination Algorithm; Multimodal optimization; Multimodal Flower Pollination Algorithm
- Abstract
This paper proposes a new algorithm called Multimodal Flower Pollination Algorithm (MFPA). Under MFPA, the original Flower Pollination Algorithm (FPA) is enhanced with multimodal capabilities in order to find all possible optima in an optimization problem. The performance of the proposed MFPA is compared to several multimodal approaches considering the evaluation in a set of well-known benchmark functions. Experimental data indicate that the proposed MFPA provides better results over other multimodal competitors in terms of accuracy and robustness.
- Copyright
- © 2017, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).
Download article (PDF)
View full text (HTML)
Cite this article
TY - JOUR AU - Jorge Gálvez AU - Erik Cuevas AU - Omar Avalos PY - 2017 DA - 2017/01/25 TI - Flower Pollination Algorithm for Multimodal Optimization JO - International Journal of Computational Intelligence Systems SP - 627 EP - 646 VL - 10 IS - 1 SN - 1875-6883 UR - https://doi.org/10.2991/ijcis.2017.10.1.42 DO - 10.2991/ijcis.2017.10.1.42 ID - Gálvez2017 ER -