The Sequential Compound Option Pricing with Random Interest Rate and Application to Project Valuation
Meng-Yu Lee a, Fang-Bo Yeh b, An-Pin Chen a
a: Institute of Information Management, National Chiao-Tung University, Taiwan.
mongyu@iim.nctu.edu.tw ;
b: Department of Mathematics, Tunghai University, Taiwan.
fb.yeh@math.thu.edu.tw

Abstract
This paper proposes the pricing formula of sequential compound options (SCOs) with random interest rate and the applications call Milestone Project Valuation (MPV). Most compound options in literatures are 2-fold with constant parameters through time. The multi-fold compound options are just sequential compound CALL options. The multi-fold sequential compound options proposed in this study are compound option on (compound) option with random interest rate and allow call/put alteration. Besides, the parameters can vary in different folds and make the model more flexible. The SCOs can enhance and broaden the usages of compound option in real option and financial derivative fields, including MPV. The projects that set some critical milestones, which should be achieved sequentially, are called milestone projects. This study propose the milestone project valuation by SCOs with random interest rate.

Keywords: sequential compound option, project valuation, real option, random interest rate, option pricing

1. Introduction

Compound options, the options with options as underlying, are one of the important financial innovations. The fold number of a compound option counts how many option layers tacking directly on other underlying options. Original compound options are proposed by Geske (1979) with 2-fold. A specific multi-fold compound option formula is revealed by Carr (1988) while the sequential compound call (SCC) is proved by Thomassen & Van Wouwe (2001) and Chen (2003). Chen (2002) and Lajeri-Chaherli (2002) prove the 2-fold compound options through risk-neutral method simultaneously. Eletta & Rossella (2003) generalized the fold compound calls by time-dependent parameters.

Many financial applications extending from the compound option theory are widely employed. The seminal study by Geske and Johnson (1984a) derived the analytic American put option under the inspiration of compound option, while Carr (1988) presented the sequential exchange options formula. Corporate debt (Geske & Johnson, 1984b; Chen, 2003), chooser options (Rubinstein, 1992), caplets and floorlets (the options of the interest rate options) (Musiela & Rutkowski, 1998) are also priced by compound options.

Besides the financial derivative pricing, the compound option theory is also used widely in the real option field originated by Trigeorgis (1993). However, the sophisticated structure of the derivative pricing and the wide deployment in the real option field make the current compound option methodology insufficient. The 2-fold compound options are not enough for the block-building financial innovations whereas the multi-fold compound options focus on the sequential compound calls only.

This paper extend the SCOs from fold-wise interest rate (Lee et al., 2006) to random interest rate. The SCOs use vanilla European options as building blocks and extend the compound option theory to multi-fold sequential compound options with random interest rate as well as (SCOs) alternating puts and calls. The SCOs are (compound) options on compound options, where the option features of different folds could be assigned arbitrarily as call or put. The SCOs presented in this paper allow the parameters (such as volatility) to vary in different folds. The random interest rate model derived by the forward measure enable the long-term SCOs more realistic. The explicit valuation formula and sensitivity analysis of SCOs are proved by the risk-neutral method in this study. Comparing with the P.D.E. method, there is more financial intuition coinciding with the risk-neutral SCOs derivation.

The multi-fold SCOs alternating puts/calls with fold-dependent parameters can enhance the compound option application, especially in real option fields. The real world cases may often be multiple interacting options containing different option types (Trigeorgis,1993), such as expansion, contraction, shutting down, abandon, switch and or growth. The interaction between different types of options could be evaluated by the SCOs. The SCOs proposed in this study make the exotic multiple interacting option valuation possible. Also, the financial derivative pricing, such as exotic chooser options and capletsions, can also employ the SCOs.

The applications of SCOs call Milestone Project Valuation (MPV) is proposed in this paper. The projects that set some critical milestones, which should be achieved sequentially, are called milestone projects. The milestone projects would fail if any one of the serial milestones is not completed. The MPV method is designed for multi-stage project based on the results of SCO. Each milestone completion has the choice to enter the next stage or not, hence the sequential project milestone could be viewed as the sequential compound CALL options.

This paper is arranged as the following: section 2 presents the SCOs pricing formula. Section 3 exhibits the MPV method. The paper ends with the conclusion.

2. Sequential Compound Options with Random Interest Rate

This section defines the notations and derives the multi-fold SCOs with interest rate through the forward measure method. The SCOs, composed of European options, are the (compound) option on compound options, where the option features of different folds could be assigned arbitrarily as either call or put.

Denote the correlation matrix \(Q \), := \([Q_{i,j,s}]_{i,j,s}\), where \(Q_{i,j,s} \) is the symmetric \((g,h)\) entry of the \(Q \), \(\forall i \leq g \leq h \leq k \). Similarly, \(d_{g,h} \) is the \(g\)-th entry of the vector \([d_{g,h}]_{g} \), \((Q_{i,j,s})_{i,j,s}^{(g,h)} \) is the \((k-1)\) by \((k-1)\) matrix which exclude the \(i \) row and the \(j \) column of \([Q_{i,j,s}]_{i,j,s} \). Denote the function \(f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2} \). The
Under the above notations, for example, a call option with the asset as its underlying validates from \(T_0 \) to \(T \), set at time \(T_0 \) for an investment starting at time \(t \) and yielding one unit of currency at time \(T \), is a martingale, for \(T_0 < t < T \). Let \(\tilde{W}^t \) be the Brownian Motion under \(\tilde{P}^t \). Assume that the dynamics of the forward price is

\[
\frac{d\tilde{P}^t}{\tilde{P}(t)} = \sigma(t)F(t,T)d\tilde{W}^t \quad \text{By Itô Lemma,}
\]

Take the asset price \(S(t) \) as the numéraire. Under \(\tilde{P}^t \),

\[
\frac{d\tilde{P}^t}{\tilde{P}(t)} = \frac{1}{S(t)} \frac{dS(t)}{S(t)}
\]

By Itô Lemma,

\[
d\tilde{W}^t = d\tilde{W}^t - \sigma(t)dt.
\]

By Giriano’s Theorem, as \(d\tilde{P}^t = \frac{dF(t,T)}{F(t,T)}d\tilde{P}^t \), \(\tilde{W}^t \) is the Brownian Motion under \(\tilde{P}^t \). Hence,

\[
\frac{d}{F(t,T)} = \frac{-\sigma(t)dt}{F(t,T)} \quad \text{under } \tilde{P}^t.
\]

By Itô Lemma again,

\[
\frac{d}{F(t,T)} = \frac{-\sigma(t)dt}{F(t,T)} = \frac{-\sigma(t)dt}{F(t,T)}
\]

Thus,

\[
\frac{d}{F(t,T)} = \frac{1}{F(t,T)}
\]

The exploited dynamics are used for the induction. The (2.1) is true for \(i = 1 \). For the case \(\Lambda_{1,i} = 1 \) is exhibited in Shreve (2004) and the other case, \(\Lambda_{1,i} = 1 \), can be proved by the similar way.

Assume that the (2.1) is true for the \(i \)-fold compound option \(V^i(T) \), it is showed that the (2.1) is also true for the \(i+1 \)-fold compound option, for any \(\Lambda_{1,g} \), \(1 \leq g \leq i+1 \).

Because the underlying asset of \(V^i(T) \) is \(V^i(T) \), instead of \(V^i(T) \), the start time of the \(i \)-fold compound option is changed simultaneously according to the time shift. Hence

\[
\frac{\Lambda_1}{\Lambda_1}B(T,T_0)K_i \tilde{S}_{g} \equiv \left\{ \Lambda_1, S_{g}, a_{g}^{i}, \tilde{P}_{g}, \frac{1}{\tilde{S}_{g}} \right\}
\]

At the maturity time \(T_0 \) of the \(i+1 \)-fold compound option, the price

\[
\limits{\frac{\Lambda_1}{\Lambda_1}B(T,T_0)K_i \tilde{S}_{g} \equiv \left\{ \Lambda_1, S_{g}, a_{g}^{i}, \tilde{P}_{g}, \frac{1}{\tilde{S}_{g}} \right\} ...
\]

then

\[
\Psi_i^+(T) = \left\{ \Lambda_1, S_{g}, a_{g}^{i}, \tilde{P}_{g}, \frac{1}{\tilde{S}_{g}} \right\} ...
\]

with assumptions that the EAP (\(S_{g} \)) exists,

\[
\Psi_i^+(T) = \left\{ \Lambda_1, S_{g}, a_{g}^{i}, \tilde{P}_{g}, \frac{1}{\tilde{S}_{g}} \right\} ...
\]

Theorem 1: Sequential compound option pricing with random interest rate

Denote

\[
\ln \left[\frac{F(T, T_{0}, T_{0})}{S_{g}} \right] + \frac{1}{2} \sum_{a_{g}} \sigma_{g}^{2} a_{g}^{2} \quad \forall g \geq 1
\]

(2) \(b_{g}^{i} = a_{g} - \frac{1}{i} \sum \sigma_{g}^{2} a_{g}^{2} \quad \forall g \geq 1 \)

(3) \(\hat{p}_{g}^{i} = \Lambda_{g} \hat{p}_{g}^{i} \quad \forall h \geq 1 \quad \hat{p}_{g}^{i} = 1 \quad \forall g ; \rho_{g}^{i} = \rho_{g} \quad \forall h \leq g < h \)

(4) Equivalent asset price (EAP)

\[
S_{g}^{i} = \left\{ K_{i}, g = i \right\}
\]

The stock price which makes \(\Omega_{g}^{i} = K_{i} \quad \forall i \leq g < i \).
H_{g+i} = \frac{\lambda_{2g+i,2g+i} \lambda_{g+i}}{\sigma_T^2} \left[\lambda_{g+i} \rho_{g+i} \right]^{1/2} \left[\lambda_{g+i} \rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2}

\lambda_{2g+i,2g+i} = \Lambda_{2g+i,2g+i} \Lambda_{g+i,\lambda} \rho_{g+i}

\text{According to the above statements,}

\left[H_{g+i}\right]_{(\alpha)} = \left[p_{g+i}\right]_{(\alpha)}

\text{and}

\tilde{\Psi}_{g+i}^* = \lambda_{2g+i,2g+i} \lambda_{g+i} \left\{ \Lambda_{g+i,\lambda} \rho_{g+i} \right\} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2}

\tilde{\Psi}_{g+i}^* = \lambda_{2g+i,2g+i} \lambda_{g+i} \left\{ \Lambda_{g+i,\lambda} \rho_{g+i} \right\} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2}

\tilde{\Psi}_{g+i}^* \text{ can be derived under the}

\tilde{\Psi}_{g+i}^* = \lambda_{2g+i,2g+i} \lambda_{g+i} \left\{ \Lambda_{g+i,\lambda} \rho_{g+i} \right\} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2}

\tilde{\Psi}_{g+i}^* \text{ can be derived under the same method.}

\tilde{\Psi}_{g+i}^* = \lambda_{2g+i,2g+i} \lambda_{g+i} \left\{ \Lambda_{g+i,\lambda} \rho_{g+i} \right\} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2} \left[\rho_{g+i} \right]^{1/2}

\tilde{\Psi}_{g+i}^* \text{ is proved. Q.E.D.}

3. The Milestone Project Valuation (MPV)

This section proposes the Milestone Projection Valuation (MPV) method for the multi-stage projects. The projects that set some critical milestones which should be achieved sequentially are called milestone projects. The milestone projects are failed if any one of the serial milestones is not completed. The milestone projects are very common in real situation, including R&D management, manufactures, etc. Recently, the popular real option approach is applied for flexible consideration and reasonable explanation. Under the framework of financial option theory, the real option approach decomposes the project valuation as several parameters, including the present value, costs, time to maturity, value uncertainty (volatility) and interest rate. Most of the existing real option studies for the multi-stage milestone project valuations use one-fold options, while the others apply multi-fold options under the assumption of constant parameter through whole the processes (Casimino et al., 2004). However, the parameters often change due to the milestone completion and the project values will be misestimated if parameters are assumed constant through all the time. The one-fold real option approach for multi-stage project is even inadequate.

Based on the results of SCOs (2.1), this paper proposes a method called Milestone Projection Valuation (MPV) for multi-stage project valuation. Each milestone completion has the choice to enter the next stage or not, and the sequential project milestone can be viewed as the sequential compound CALL options. The MPV method adopts the results of SCOs and the project is regarded as the corresponding stock in SCOs. Under the same notations as Theorem 1, the MPV valuation formula is expressed as
\[MPV(T) = \sum_i \left[\left(e^{r_i T} - P_i \right) \right] \]
\[\frac{1}{B(T,T)} \mathbb{I} \left\{ \left[P_i \right] \mathbb{I} \left[\{ r_i \} \right] \right\} \]
where the strikes represent the cost at different stages; the volatilities come from the project value fluctuation and the dividend rates are replaced as the depression rates. The option features \(A_{ij} \) equal one (for any \(i, j \)) due to the underlying compound calls, hence disappear in the MPV pricing formula.

Compared with the literatures, the MPV not only applies the multi-fold compound option theory, but also allows the parameters piece-constant varying with the distinct stages. The different parameters of different stages can adapt to the change of project nature after the milestone completion. More phenomena can be discovered from the parameter comparisons. Under the MPV model, the implicit "valuation experience" is decomposed as parameters.

The new drug applications (NDAs) may be the most famous and significant milestone projects. Under the consideration of human health, the NDAs are the well-regulated including the stages of pre-clinical trial, phase 1, phase 2, phase 3 and approval phase. Each stage has a definitive milestone. The time- and cost-consuming NDAs also represent the characteristics of the parameter assumptions because the R&D results from NDAs dominate their future! The MPV model can enhance the NDAs valuation under a more reasonable framework and improve the R&D management of these companies.

4. Conclusion

The puts/calls-alternating sequential compound options (SCO) with random interest rate and fold-wise constant parameters are proposed in this study. Based on the results, the Milestone Projection Valuation (MPV) method is proposed for multi-stage project valuation. The option features are just either puts/calls-alternating 2-fold compound options or multi-fold sequential compound call without puts/calls-alternating. Seldom fold-wise differences nor the random interest rate are taken into consideration. The SCOs with random interest rate presented in this paper have the following specialties. First of all, the multi-fold SCOs with arbitrary fold feature assignments as puts or calls can enhance the compound options usage far beyond the traditional sequential compound calls. Second, the parameters (interest rate, volatility) often vary with time or folds due to different characteristics. The presented SCO formula enables random interest rate and volatility change fold-wise to capture the "sequential" features. The third is that the arbitrary fold number of SCOs can be formed.

The SCOs not only generalized the contributions of Black-Scholes (1973), Geske (1979) and Thomassen & Van Wouwe (2001) to put/call alternating multi-fold compound options, but can be evaluated by linear combination of the stock and strike prices weighted by different variate normal integrals. Corresponding to intuitions, the SCOs seem as the multi-dimensional options extending from Black-Scholes (1973) and Geske (1979). The risk-neutral method enriches the SCOs pricing formula derivation with financial implications.

The SCOs can enhance and broaden the usages of compound option in real option and financial derivative fields. The multiple interacting options incorporating different type options sophisticatedly can be evaluated by aggregation of various SCOs.

The MPV is designed for multi-stage project valuation. The MPV method adopts the results of SCO of the project is regarded as the corresponding stock in SCO. Compared with the literatures, the MPV not only applies the multi-fold compound option theory, but also allows the parameters piece-constant varying with the distinct stages. The different parameters of different stages can adapt to the change of project nature after the milestone completion. More phenomena can be discovered from the parameter comparisons. Under the MPV model, the implicit "valuation experience" is decomposed as parameters.

5. References