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Abstract

Reduction of multidimensional Poincaré-invariant equations to ordinary differential
equations and 2-dimensional equations is considered.

Let us consider the nonlinear wave equation

Φ(2u, (∇u)2, u) = 0, (1)

where u = u(x) is a scalar function of the variable x, x = (x0, x1, . . . , xn) ∈ R1,n,

2u =
∂2u

∂x2
0

− ∂2u

∂x2
1

− · · · − ∂2u

∂x2
n

, (∇u)2 =
(

∂u

∂x0

)2

−
(

∂u

∂x1

)2

− · · · −
(

∂u

∂xn

)2

.

The equation (1) is invariant under the Poincaré algebra AP (1, n). The basis of this
algebra is formed by the following vector fields

Pµ = ∂µ, J0a = x0∂a + xa∂0, Jab = xb∂a − xa∂b, (2)

µ = 0, 1, . . . , n; a, b, = 1, 2, . . . , n.
A great number of well-known equations are particular cases of the equation (1).
Let’s take for instance the d’Alembert equation

2u + λuk = 0; (3)

the Liouville equation

2u + λ expu = 0; (4)

the sine-Gordon equation

2u + λ sinu = 0; (5)

the eikonal equation

(∇u)2 = 1. (6)

The reduction problem of the equation (1) is very important. The main point of
reduction consists in introduction of new variables ω1(x), . . . , ωk(x) (1 ≤ k ≤ n) being
functions of x and having property that the ansatz u = ϕ(ω1, . . . , ωk) reduces the equation
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(1) to one with a smaller number of variables ω1, . . . , ωk. The construction of all ansatzes
for the equation (1) is a very difficult problem.

The problem is more easy if variables ω1, . . . , ωk are invariants of some subalgebra of
the algebra AP (1, n). These variables are called invariant variables. It is easy to find
invariant variables if the optimal system of subalgebras of the algebra AP (1, n) is known.
It is impossible in practice to construct the optimal system of subalgebras of the algera
AP (1, n) in a general case (for an arbitrary n). But the situation isn’t hopeless, because for
symmetry reduction it is enough to know subalgebras having essentially different systems
of invariants.
Definition. Two subalgebras L1, L2 ⊂ AP (1, n) are called equivalent if there exists a
group transformation ϕ transforming the system of invariants of the subalgebra L1 into
that L2.

This relation is a more strong relation on the set of all subalgebras of the algebra
AP (1, n) than the relation of conjugation.

Among all subalgebras of the algebra AP (1, n) having the same invariants, there exists
the algebra containing all subalgebras having this property. This subalgebra is called I-
maximal. Two I-maximal subalgebras are equivalent iff they are conjugate. I-maximal
subalgebras differ advantageously from the rest subalgebras of the algebra AP (1, n). They
are determined uniquely and have a more easy structure. Thus it is enough to construct
the system of I-maximal subalgebras of the algebra AP (1, n) instead of the optimal system
of subalgebras.

Grundland A.M., Harnad J., Winternitz P. [1] classified I-maximal subalgebras of rank
n of the algebra AP (1, n). It allowed to construct seven ansatzes reducing the equation
(1) to ordinary differential equations.

The problem of classification of I-maximal subalgebras of the algebra AP (1, n) was
solved in works [2, 3] . These results, in particular, imply that there exist 14 types of
ansatzes reducing the equation (1) to 2-dimensional equations. Let us adduce main types
of these ansatzes

u = ϕ(ω1, ω2) :

1) ω1 = x0, ω2 = xn;

2) ω1 = x0, ω2 = x2
1 + . . . + x2

m,m = 1, 2, . . . , n;

3) ω1 = x0 − xn, ω2 = x2
0 − x2

1 − . . .− x2
m − x2

n, m = 1, 2, . . . , n− 1;

4) ω1 = x2
1 + . . . + x2

m, ω2 = x2
0 − x2

n,m = 1, 2, . . . , n− 1;

5) ω1 = x2
0 − x2

1 − . . .− x2
m − x2

n, ω2 = xm+1, m = 2, 3, . . . , n− 2;

6) ω1 = x2
0 − x2

1 − . . .− x2
m − x2

n, ω2 = x2
m+1 + . . . + x2

q ,

m = 2, 3, . . . , n− 2; q = m + 1, . . . , n;

7) ω1 = (x0 − xn)2 − 4x1, ω2 = (x0 − xn)3 − 6x1(x0 − xn) + 6(x0 + xn);

8) ω2 = x0 − xn, ω1 =

(
x2

0 −
n∑

i=1

x0 − xn

x0 − xn − γi
(x2

di−1+1 + · · ·+ x2
di

)− x2
n

) 1
2

,
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d0 = 0, d1, d2, . . . , dt ∈ R, d0 < d1 < . . . < dt = m, m ≤ n, γi ∈ R;

9) ω1 = x2
0 − x2

n, ω2 = α ln(x0 + xn)− x1, α > 0;

10) ω1 = x2
0 − x2

1 − . . .− x2
m − x2

n, ω2 = α ln(x0 − xn) + xm+1,

m = 1, 2, . . . , n− 2, α > 0;

11) ω1 = x2
1 + x2

2, ω2 = x0 + arctan
x2

x1
.

Each of these ansatzes may be written in a more general form using transformations of
the group P (1, n).

Let us consider the nonlinear d’Alembert equation

2u + λuk = 0 (7)

in the Minkowski space R1,n. The equation (7) has been investigated in works [4, 5].
The equation (7) is invariant under the extended Poincaré algebra AP̃ (1, n) being

obtained from the algebra AP (1, n) by adding the dilatation operator

D = −x0∂0 − . . .− xn∂n +
2

k − 1
u∂u.

There exists the simple algorithm which allows to classify I-maximal subalgebras of the
algebra AP (1, n) if the classification of I-maximal subalgebras of the algebra AP (1, n) is
known. It allows to construct all symmetry ansatzes reducing the equation (7) to ordinary
differential equations. The following ansatzes are obtained:

1) u = x
2

1−k

0 ϕ(ω), ω =
x2

1 + x2
2 + . . . + x2

m

x2
0

, m = 1, 2, . . . , n;

2) u = (x0 − xn)
2

1−k ϕ(ω), ω =
(x2

0 − x2
1 − . . .− x2

m − x2
n)

1
2

x0 − xn
,

m = 1, 2, . . . , n− 1;

3) u = (x2
0 − x2

1 − . . .− x2
m − x2

n)
1

1−k ϕ(ω),

ω = δ ln(x2
0 − x2

1 − . . .− x2
m − x2

n)− ln(x0 − xn), m = 1, 2, . . . , n− 1;

4) u = (x0 − xn)
1

1−k ϕ(ω), ω =
x2

0 − x2
1 − . . .− x2

m − x2
n

x0 − xn
+ ln (x0 − xn),

m = 1, 2, . . . , n− 1;

5) u = (x2
1 + . . . + x2

m)
1

1−k ϕ(ω), ω =
x2

1 + x2
2 + . . . + x2

m

x2
0 − x2

n

, m = 1, 2, . . . , n− 1;

6) u = x
2

1−k

m+1ϕ(ω), ω =
x2

0 − x2
1 − . . .− x2

m − x2
n

x2
m+1

, m = 1, 2, . . . , n− 2.
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Let us consider the multidimensional eikonal equation( ∂u

∂x0

)2
−
( ∂u

∂x1

)2
− . . .−

( ∂2u

∂xn−1

)2
= 1, (8)

where u = u(x) is a scalar function of the variable x = (x0, x1, . . . , xn−1), n ≥ 2. The
equation (8) is invariant under the conformal algebra AC(1, n). The algebra AC(1, n)
contains the extended Poincaré algebra AP (1, n) being generated by the vector fields:

Pα = ∂α, J0a = x0∂a + xa∂0, Jab = xb∂a − xa∂b, D = −xα∂α, xn = u

(α = 0, 1, . . . , n; a, b = 1, 2, ..., n).

Let us use maximal subalgebras of rank n− 1 of the algebra AP̃ (1, n) to find ansatzes
reducing the equation (8) to ordinary differential equations. As consequence we obtain 18
types of the following ansatzes [6]. All these ansatzes are split into three classes. Below
we adduce the examples of ansatzes for each of the classes.

I. Ansatzes of the type u = f(x)ϕ(ω) + g(x), ω = ω(x)

1) u = ϕ(ω), ω = x0;

2) u = ϕ(ω) + ln(xo + xm+1), ω = x2
0 − x2

1 − . . .− x2
m − x2

m+1,
m = 0, 1, . . . , n− 1; n ≥ 3.

II. Ansatzes of the type u2 = f(x)ϕ(ω) + g(x), ω = ω(x)

1) u2 = ϕ(ω)− x2
1 − . . .− x2

m, ω = x0 − xn, m = 1, 2, . . . , n− 1;

2) u2 = ϕ(ω) + x2
0 − x2

1 − . . .− x2
m, ω = x0 − xm, m = 1, 2, . . . , n− 1;

3) u2 = (x2
n−2+x2

n−1)ϕ(ω)+x2
0−x2

1−. . .−x2
m, ω = 2 ln(x0−xm)−(1+α) ln(x2

n−2+
x2

n−1)− 2C arctan xn−1
xn−2

, m = 1, 2, . . . , n− 3; n ≥ 4, C > 0, α ≥ 0.

III. Ansatzes of the type h(u, x) = f(x)ϕ(ω) + g(x), ω = ω(u, x)

1) u = 1
4ϕ(ω) + 1

4(x0 − x1)2, ω = (x0 − x1)3 − 6u(x0 − x1) + 6(x0 + x1);

2) u2 = ϕ(ω)− x2
1, ω = x0 + arctan u

x1
;

3) u2 = (x0 − x2)ϕ(ω)− x2
1, ω = x0 + x2 + ln(x0 − x2) + 2α arctan u

x1
, α ≥ 0.

The search for additional symmetries of differential equations is an important problem
of investigations concerning partial differential equations. One of the possible ways to
solve this problem is a study of the symmetry of the 2-dimensional reduced equations.

Let us consider, for instance, the symmetry ansatz

u = u(ω1, ω2), (9)

where ω1 = x0 − xm, ω2 = x2
0 − x2

1 − . . .− x2
m (m = 2, 3, . . . , n). The ansatz (9) reduces

the d’Alembert equation (7) to the 2-dimensional equation

4ω1u12 + 4ω2u22 + 2(m + 1)u2 + λuk = 0, (10)

where u12 = ∂2u
∂ω1∂ω2

, u22 = ∂2u
∂ω2

2
, u2 = ∂u

∂ω2
.
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Theorem 1 The maximal algebra of invariance of equation (10) in the case of k 6=
0, m + 1

m− 1 and m > 1 in the Lie sense is the 4-dimensional Lie algebra A(4) which is
generated by such operators:

X1 = ω1
∂

∂ω1
+ ω2

∂

∂ω2
− 1

k − 1
u

∂

∂u
, X2 = ω2

∂

∂ω2
− 1

k − 1
u

∂

∂u
,

X3 = ω1
∂

∂ω2
, M = ωl

1(ω1
∂

∂ω1
+ ω2

∂

∂ω2
− m− 1

2
u

∂

∂u
),

where l = (m− 1)(k − 1)
2 − 1.

Theorem 2 The maximal algebra of invariance of equation (10) in the case of k = m + 1
m− 1

and m > 1 in the sense of Lie is the 4-dimensional Lie algebra B(4) which is generated
by such operators:

S = ω1 lnω1
∂

∂ω1
+ ω2 lnω1

∂

∂ω2
− m− 1

2
ln(ω1 + 1)u

∂

∂u
,

Z1 = ω1
∂

∂ω1
+ ω2

∂

∂ω2
− m− 1

2
u

∂

∂u
, Z2 = ω2

∂

∂ω2
− m− 1

2
u

∂

∂u
, Z3 = ω1

∂

∂ω2
.

Let us note that X1, X2, X3 (Z1, Z2, Z3) are operators of the algebra of invariance of
the d’Alembert equation. But these operators are written in new variables. The operator
M isn’t a symmetry operator of the equation (7). Also the operator S isn’t a symmetry
operator of the equation (7).

The operators M and S allow to construct new ansatzes reducing the d’Alembert
equation to ordinary differential equations. Let us adduce some types of such ansatzes:

1) u =
[
(x0 − xm)

(m−1)(k−1)
2

−1(x2
0 − x2

1 − . . .− x2
m)
] 1

1−k

ϕ(ω),

ω =
α

l
(x0 − xm)−l + ln

x2
0 − x2

1 − . . .− x2
m

x0 − xm
;

2) u = (x0 − xm)
1−m

2 ϕ(ω), ω =
x2

0 − x2
1 − . . .− x2

m

x0 − xm
+

ε

l
(x0 − xm)−l.
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