Research on Competitiveness of Automotive Product Innovation in China

Xuetao Li
Department of Economics and Management
Hubei University of Automotive Technology
Shiyan, China
E-mail:857890008@qq.com

Longmao Yan
Department of Economics and Management
Hubei University of Automotive Technology
Shiyan, China
156782985@qq.com

Abstract—In this paper, the author firstly constructed an evaluation index system of competitiveness of Chinese auto industry innovation, and determined the weights by the use of AHP method, and then uses fuzzy evaluation method to calculate and quantize the competitiveness of innovation. Finally, through comparing, it is come to conclusions that the competitiveness of Chinese auto industry innovation is within a range of fair and poor and the competitiveness of China’s auto industry innovation is still at a low level.

Keywords- AHP Fuzzy evaluation method; China; auto industry innovation; competitiveness

Level of innovation is the core of industrial competitiveness. The market rule "survival of the fittest" requires enterprises in the industrial cluster continue to adapt to market demand changes, timely detect market development trends, produce and develop better quality products to maintain market competition advantage. This paper attempts to do quantitative analysis on competitiveness of Chinese auto industry innovation by using AHP evaluation method.

I. EVALUATION INDEX SYSTEM OF COMPETITIVENESS OF CHINESE AUTO INDUSTRY INNOVATION

Competitiveness of automobile industry innovation is a comprehensive ability of cluster development, which is composed of factors in industrial competitiveness, interaction among the factors and the overall operation of industrial cluster.

To construct the automotive industry innovation competitiveness evaluation index system, we need to do systematical analysis on competitiveness of industrial innovation, including factors that consist of the industrial innovation system, in what way these factors formed; industry innovation environment analysis, characteristics and development trends of the environment. The complexity of industrial innovation determines that the evaluation of the competitiveness of industrial clusters must be multi-layered.

On the basis of current studies on evaluation index system of automotive industry innovation competitiveness, according to detailed analysis on influencing factors of automotive industry innovation competitiveness, a two indicators-evaluation system of competitiveness of automotive industry innovation is proposed in this paper, as is shown in Table1.

II. DETERMINE THE WEIGHT OF INDEX SYSTEM BY AHP

AHP (Analytic Hierarchy Process, AHP) is a method to identify weight vector effectively, which is proposed by Saaty, an American professor of operations research, in 1970s.

In general, if a problem involves n factors, when the basis isn’t very full, the share of each factor in the whole can only be judged by experts’ experiences.

But as long as n ≥ 3, any expert can be difficult to tell a group of precise data, however, if any two factors are taken from all the factors to do a comparison, the experts can

<table>
<thead>
<tr>
<th>automotive industry innovation competitiveness system (C)</th>
<th>indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>first-grade indexes</td>
<td>second-grade indexes</td>
</tr>
<tr>
<td>Innovation Level (C₁)</td>
<td>R&D Funds (C₁₁)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R&D personnel (C₁₂)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>innovation foundation (C₂)</td>
<td>independent brand (C₂₁)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hardware facilities (C₂₂)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>government behavior (C₃)</td>
<td>government subsidies (C₃₁)</td>
</tr>
<tr>
<td>industry opportunity (C₄)</td>
<td>market capacity (C₄₁)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>industrial status (C₅)</td>
<td>GDP/GDP per capita (C₅₁)</td>
</tr>
</tbody>
</table>
generally use qualitative language like "important", "slightly important", "obviously important", "very important", "extremely important" to explain the degree of importance between one of the factors and the other. Saaty proposed to quantify these qualitative language, and to introduce the function $f(x, y)$ to express scale of importance of factor x and y.

When a factor in above hierarchy is taken for comparison criteria, α_{11} can be used to express the relative importance of element i and j in a hierarchy. Generally, α_{11} take a positive integer of 1-9 and its reciprocal as scale, as in Table 2.

Such a matrix composed of α_{11} is called the comparative judgment matrix $A = (\alpha_{ij})_{mn}$. In this paper, we do comparison between two indicators of the indicator system established in the former part according to expert questionnaires, and transform the results of the qualitative judgments into quantitative data according to the proportion scale of 1 to 9, to form the following pairs of judgment matrix:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

TABLE II. SCALES AND THEIR MEANING

<table>
<thead>
<tr>
<th>Value</th>
<th>explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i and j Equally important</td>
</tr>
<tr>
<td>3</td>
<td>i Somewhat important than j</td>
</tr>
<tr>
<td>5</td>
<td>i Obviously important than j</td>
</tr>
<tr>
<td>7</td>
<td>i Highly important than j</td>
</tr>
<tr>
<td>9</td>
<td>i Extremely important than j</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>Median</td>
</tr>
<tr>
<td>Reciprocal</td>
<td>ratio α_{ij}^{-1} of i and j</td>
</tr>
</tbody>
</table>

After judgment matrix A being constructed, calculate the largest eigenvalue λ_{max} of the matrix, and then use its corresponding characteristic equation:

$$A\Omega = \lambda_{\text{max}}\Omega$$

Calculate the corresponding eigenvector Ω, then feature vector normalize Ω. This is the importance in weight of the factors in the same hierarchy relative to one factor in the former hierarchy. This process is called hierarchy single fanking.

Based on hierarchy single fanking, uniformity inspection on the matrix must be done. Whether the consistency ratio $C.R. \leq 0.1$ is established can be used to do the test. If $C.R. \leq 0.1$, inconsistency of the matrix can be acceptable.

$$C.R. = \frac{C.I.}{R.I.}, \quad C.I. = \frac{\lambda_{\text{max}} - n}{n - 1}$$

TABLE III. AVERAGE RANDOM CONSISTENCY INDEX

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.I.</td>
<td>0</td>
<td>0</td>
<td>0.58</td>
<td>0.9</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Finally, do hierarchy general ranking and uniformity inspection. Hierarchy general ranking is to calculate the scale of relative importance of all elements in the same hierarchy to the top. This process is carried out from the highest hierarchy to the lowest layer by layer. Formula for calculating the general ranking weight is as follows:

$$\alpha^{k-1} = (\alpha^{k-1}_1, \alpha^{k-1}_2, \cdots, \alpha^{k-1}_m)$$

α^{k-1} is a combined weight vector of element m on the k-th hierarchy relative to total target.

Then on the kth hierarchy, $\alpha^{k} = B^{k}B^{k-1} \cdots B^{1}\alpha^{2}$,

$$B^{k} = (b^{k}_{1}, b^{k}_{2}, \cdots, b^{k}_{m}) ,$$

$$B^{k}_{i} = [b^{k}_{i}(1), b^{k}_{i}(2), \cdots, b^{k}_{i}(n)]^{T}.$$

$b^{k}_{i}(i)$ is scale of relative importance of element i on the kth hierarchy.

A ranking weight formula is:

$$\alpha^{k} = B^{k}B^{k-1} \cdots B^{1}\alpha^{2}, 3 \leq k \leq h$$

α^{2} is ranking weight vector for factors on the second hierarchy, h is the number of hierarchy.

Evaluation index system weights of China's auto industry innovation competitiveness are calculated in Table 4.
TABLE IV. CHINA’S AUTO INDUSTRY INNOVATION COMPETITIVENESS EVALUATION INDEX SYSTEM WEIGHTS

<table>
<thead>
<tr>
<th></th>
<th>first-grade indices</th>
<th>Weight</th>
<th>second-grade indices</th>
<th>Weight</th>
<th>third-grade indices</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C_1</td>
<td>0.552</td>
<td>C_11</td>
<td>0.61</td>
<td>C_111</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>C_12</td>
<td>0.22</td>
<td>C_121</td>
<td>0.22</td>
<td>C_1211</td>
<td>0.841</td>
</tr>
<tr>
<td></td>
<td>C_13</td>
<td>0.15</td>
<td>C_131</td>
<td>0.15</td>
<td>C_1311</td>
<td>0.683</td>
</tr>
<tr>
<td>C</td>
<td>C_2</td>
<td>0.217</td>
<td>C_21</td>
<td>0.40</td>
<td>C_211</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>C_22</td>
<td>0.17</td>
<td>C_221</td>
<td>0.17</td>
<td>C_2211</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>C_23</td>
<td>0.42</td>
<td>C_231</td>
<td>0.42</td>
<td>C_2311</td>
<td>0.595</td>
</tr>
<tr>
<td>C</td>
<td>C_3</td>
<td>0.231</td>
<td>C_31</td>
<td>0.50</td>
<td>C_311</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>C_32</td>
<td>0.11</td>
<td>C_321</td>
<td>0.11</td>
<td>C_3211</td>
<td>0.142</td>
</tr>
</tbody>
</table>

III. FUZZY EVALUATION OF COMPETITIVENESS OF CHINESE AUTO INDUSTRY INNOVATION

A. Establishment of the Fuzzy Set

a) Define set of indicators on criteria hierarchy as \(C = (c_1, c_2, c_3) \), the corresponding weight set as \(\Omega = (\omega_1, \omega_2, \omega_3) \), in which \(\omega_k = (1, 2, 3) \) express the proportion of indicator \(c_k \) in \(C \) and normalized, \[\sum_{k=1}^{3} \omega_k = 1 \]. Secondary index set as \(C_k = (c_{k1}, c_{k2}, \ldots, c_{kn}) \), the corresponding weight set as \(\Omega_k = (\omega_{k1}, \omega_{k2}, \ldots, \omega_{kn}) \), in which \(\omega_{kn} \) means the proportion of \(c_{kn} \) in \(C_k \).

b) Define set of indicators on project hierarchy as \(C_{ky} = (c_{ky1}, c_{ky2}, \ldots, c_{kyn}) \), the corresponding weight set as \(\Omega_{ky} = (\omega_{ky1}, \omega_{ky2}, \ldots, \omega_{kyn}) \), in which \(\omega_{kyn} \) means the proportion of \(c_{kyn} \) in \(C_{ky} \).

c) Define evaluation set as \(V = (v_1, v_2, \ldots, v_m) \), in which \(v_{i, t} (t = 1, 2, \ldots, m) \) expressed high to low levels of reviews. In this paper, five scoring system is adopted. Take \(m = 5 \), that is, \(V = (\text{excellent, good, fair, poor, bad}) \).

B. Determine the evaluation matrix

Firstly, do fuzzy evaluation to the third-grade index set \(C_{ky} \) on project hierarchy that makes up of each secondary indicators \(C \). Because of ambiguity of \(C_{ky} \), specific data can not be obtained. To get the extent that \(C_{ky} \) is subordinate to the \(t \)th review \(V_t \) by experts scores, that is, ratio of project hierarchy third index set \(C_{ky} \) access to review \(V_t \). It is in the form of single-factor evaluation and fuzzy evaluation matrix \(R_{ky} = (r_{ky})_{n \times 5} \) is constructed.

\[
R_{ky} = \begin{bmatrix}
 r_{ky11} & \cdots & r_{ky15} \\
 \vdots & \ddots & \vdots \\
 r_{kyn1} & \cdots & r_{kyn5}
\end{bmatrix}
\]

C. Comprehensive Evaluation

a) The first hierarchy evaluation. Do fuzzy operation to the third-grade index set \(C_{ky} \) on each project hierarchy to get membership vector \(B_{ky} \) that the third index set \(C_{ky} \) on project hierarchy to the reviews set \(V \).

\[
B_{ky} = \Omega_{ky} \times R_{ky}
\]

b) The second hierarchy evaluation. To get fuzzy evaluation matrix from operations of the first hierarchy comprehensive evaluation:

\[
R_{k} = \begin{bmatrix}
 r_{k11} & \cdots & r_{k15} \\
 \vdots & \ddots & \vdots \\
 r_{kn1} & \cdots & r_{kn5}
\end{bmatrix}
\]

Do fuzzy matrix calculation to \(R_{k} \) according to fuzzy evaluation model again, that is, do the second hierarchy comprehensive evaluation operations to get membership vector \(B_{k} \) that the second index hierarchy \(C_k \) to the reviews set \(V \).

c) The third hierarchy evaluation. To get fuzzy evaluation matrix from operations of the second hierarchy comprehensive evaluation:

\[
R = \begin{bmatrix}
 B_1 \\
 B_2 \\
 \vdots \\
 B_n
\end{bmatrix} = \begin{bmatrix}
 b_{11} & \cdots & b_{15} \\
 b_{21} & \cdots & b_{25} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \cdots & b_{n5}
\end{bmatrix}
\]

Do fuzzy matrix calculation to \(R \) according to Fuzzy evaluation model again, that is, do the third hierarchy comprehensive evaluation operations to get membership vector \(B \) that the target hierarchy index \(C \) to the reviews set \(V \). \(B = \Omega \times R = (b_1, b_2, b_3, b_4, b_5) \).
\[
\sum_{i=1}^{5} b_i \neq 1
\]

When \(\sum_{i=1}^{5} b_i \neq 1 \), normalized, that is, set:

\[
\hat{b}_i = b_i / \sum_{i=1}^{5} b_i
\]

Then \(B = (\hat{b}_1, \hat{b}_2, \hat{b}_3, \hat{b}_4, \hat{b}_5) \)

\paragraph{d) Fuzzy comprehensive evaluation model on target hierarchy:}

\[
B = \Omega \times R = \Omega \times \left(\begin{array}{c}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{array} \right) = \Omega \times \left(\begin{array}{c}
b_{11} \cdots b_{15} \\
b_{21} \cdots b_{25} \\
\vdots \\
b_{n1} \cdots b_{n5}
\end{array} \right)
\]

Let be score set \(A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)^T \), then the competitiveness score formula of calculation of China's auto industry innovation is:

\[
P = B \times A
\]

Expert investigation method is adopted in this paper. To invite a number of experts to do judgments according to actual situation of competitiveness of Chinese auto industry's innovation, the control score set \(V = (\text{excellent, good, fair, poor, bad}) \) and the weighted score coefficient matrix \(F = (9,7 , 5,3,1) \). Fuzzy evaluation results are shown in Table5

<table>
<thead>
<tr>
<th>Target evaluation</th>
<th>Comprehensive evaluation</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_3)</th>
<th>(\alpha_4)</th>
<th>(\alpha_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.957</td>
<td>C_{11}</td>
<td>3.012</td>
<td>C_{12}</td>
<td>4.174</td>
<td>C_{13}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_{21}</td>
<td>2.401</td>
<td>C_{22}</td>
<td>1.772</td>
<td>C_{23}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_{31}</td>
<td>7.139</td>
<td>C_{32}</td>
<td>3.302</td>
<td></td>
</tr>
</tbody>
</table>

\section{IV. Conclusions}

According to score set \(V \) and the weighted score coefficient matrix, when \(P \geq 9 \), the competitiveness of industrial innovation is good, when \(7 \leq P \leq 9 \), that is within a range of good and fair, when \(3 \leq P \leq 5 \), that is within a range of fair and poor, when \(1 \leq P \leq 3 \), that is within a range of fair and poor, when \(P \leq 1 \), that is bad.

The comprehensive evaluation score of competitiveness of China's auto industry innovation is \(P = 3.957 \). From the foregoing, \(3 \leq 3.957 \leq 5 \), therefore, the competitiveness of Chinese auto industry innovation is within a range of fair and poor. It is concluded that the competitiveness of China's auto industry innovation is still at a low level.

\section{Acknowledgements}

The paper has been supported by project (NO. 2012y050) of the Department of Education, Hubei Province China. Hereby thanks!

\begin{thebibliography}{9}
\end{thebibliography}