Approximation of Homogeneous Linear Algebraic Transition Systems

Yi Liang, Hao Yang, Jinzhao Wu*
Guangxi Key Laboratory of Hybrid Computational and IC Design Analysis,
Guangxi University for Nationalities,
Nanning, China
e-mail: 415360889@qq.com

Hongyan Tan
Institute of Acoustics,
Chinese Academy of Sciences,
Beijing, China

Abstract—In terms of approximation of labeled transition systems, it is inefficient to simplify system actions. This paper proposed approximation of homogeneous linear algebraic transition systems. In order to extend the system actions, homogeneous linear algebraic programs are applied to describe system actions. Then it proposed the theory and algorithm of approximation of homogeneous linear algebraic transition systems. Under certain conditions, approximation of homogeneous linear algebraic transition systems can optimize homogeneous linear algebraic transition systems efficiently. Finally, above view is verified by a simple example.

Keywords—approximate; labeled transition system; homogeneous linear algebraic transition system

I. INTRODUCTION

A transition system is a traditional description system which describes the transition relation between states. A transition system was initially used for modeling a real-time system. Subsequently, it is massively used to apply in the data intensive system and integrated circuit modeling. In the 1976, a transition system concept is initially proposed by Keller and he used the system for modeling analysis of concurrent programs [1]. In the 1984, Nicola and Hennessy introduced the transition system into a nondeterministic modeling process and analyze the probability of transition system [2,3]. Cleaveland proposed the detection method which is established in probability detection process [4]. In the 2000, Rusu proposed the I/O automata theory [5].

A transition system is the most basic computer system model. It is the powerful tool for program description and system verification. A transition system can also serve as language semantics model of many formal languages, such as communication system calculus, communication order processes, time order description languages. The formal verification of the transition system is a research hotspot in consistency checking.

This paper is organized as follows. In section 2, the homogeneous linear algebraic transition system is proposed. In section 3, the approximation of homogeneous linear algebraic transition system is established. Through approximate method in matrix eigenvalues and matrix norms, we decide whether the trace is approximate or not. In section 4, above view is verified by a simple example. In section 5, conclusion is given.

II. HOMOGENEOUS LINEAR ALGEBRAIC TRANSITION SYSTEMS

Definition 1 (Homogeneous Linear Algebraic program) Let R be the set of real numbers, $x_i (i=1,2,\cdots n) \in \mathbb{R}$ and $x'_i (i=1,2,\cdots n) \in \mathbb{R}$ be the variables, $a_{ij} (i=1,2,\cdots n; j=1,2,\cdots n) \in \mathbb{R}$ be the coefficient, a homogeneous linear algebraic program is an algebraic program likes $X' = AX$, where $X = (x_1,x_2,\ldots,x_n)^T$ and $X' = (x'_1,x'_2,\ldots,x'_n)^T$ are the pre- and post-state values of the homogeneous linear algebraic program transition, $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$ is the invertible matrix. Let $F(X) = AX$ and $F = (f_1,f_2,\cdots,f_r)^T$, then $f_i(X) = a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n (i=1,2,\cdots,n)$.

Definition 2 (Labeled Transition System) A labeled transition system is a tuple $<s_0,S,L,\rho>$, where

1) s_0 is the initial state.
2) S is a finite set of states.
3) L is a finite set of labels.
4) $\rho \subseteq S \times L \times S$ is a set of transitions. Each transition $r \in \rho$ is a tuple $<s_i,l,s_j>$, where s_i and s_j respectively represent the pre- and post-states of the transition.

Definition 3 (Finite Execute Sequence) In the labeled transition system, a finite execute sequence is $\eta = s_0l_1s_1\cdots l ns_n$ and it satisfies $s_i \xrightarrow{\eta} s_{i+1}$, where $0 \leq i \leq n-1$.

Definition 4 (Infinite Execute Sequence) In the labeled transition system, an infinite execute sequence is $\eta = s_0l_1s_1\cdots$ and it satisfies $s_i \xrightarrow{\eta} s_{i+1}$, where $0 \leq i$.

Definition 5 (Finite Trace) In the labeled transition system, a finite trace is a finite action sequence $l_1l_2\cdots l_n$ and it satisfies a finite execute sequence $\eta = s_0l_1s_1\cdots l_ns_n$.

© 2013. The authors - Published by Atlantis Press
Definition 6 (Infinite trace) In the labeled transition system, a finite trace is a finite action sequence \(l_1 \cdots l_t \) and it satisfies a finite execute sequence \(\eta = s_0, l_1, s_1, \cdots \).

Definition 7 (Homogeneous Linear Algebraic Transition System) A homogeneous linear algebraic transition system is a tuple \(<s_0, S, V, X_0, X, S, L, \rho> \), where

1) \(s_0 \) is an initial state.
2) \(S \) is a finite set of states.
3) \(V \) is a set of variables.
4) \(X_0 \) is the initial state value.
5) \(X \) is a finite set of state value.
6) \(L \) is a set of homogeneous linear algebraic programs.

A homogeneous linear algebraic program \(l \in L \) describes an action, \(l: X' = AX = F(X) \), where \(X \) and \(X' \) are the pre- and post-state values of the transition.

7) \(\rho \subseteq S \times L \times S \) is a set of state transition. \(r \in \rho \) is a tuple \(<s_i, l, s_j> \), where \(s_i \) and \(s_j \) are the pre- and post-states of the transition.

![Figure 1](image.png)

Figure 1. Example of a homogeneous linear algebraic transition system

In the Fig. 1, \(l_1, l_2, l_3, l_4 \) are homogeneous linear algebraic transition programs, \(s_0, s_1, s_2, s_3, s_4 \) are the system states.

III. APPROXIMATION OF HOMOGENEOUS LINEAR ALGEBRAIC TRANSITION SYSTEMS

In the field of computer science and control science, matrices are the results by measuring and computing. They often have some measuring errors and rounding errors. Let \(A + \delta A \) be the real matrix, \(A \) be the approximate matrix. We will study the relation between real matrix \(A + \delta A \) and approximate matrix \(A \). In this section, we research the approximation of homogeneous linear algebraic transition systems by an initial state \(s_0 \) of homogeneous linear algebraic transition systems.

If a trace of a homogeneous linear algebraic transition system is successive composed by \(k \) same homogeneous linear algebraic programs, the real homogeneous linear algebraic program is \(X' = (A + \delta A)X \), the approximate homogeneous linear algebraic program is \(X' = AX \), then the total approximate homogeneous linear algebraic program is \(X' = A_k A_{k-1} \cdots A_1 AX \). The Jordan standard form of real matrix \((A_k + \delta A_k)(A_{k-1} + \delta A_{k-1}) \cdots (A_1 + \delta A_1)\) is \(P(A + \delta A)P^{-1} = \begin{bmatrix} A_i + \delta A_i \\ \vdots \\ A_j + \delta A_j \end{bmatrix} = A' + \delta A' \), the Jordan standard form of approximate matrix \(A \) is \(PAP^{-1} = \begin{bmatrix} A_i \\ \vdots \\ A_j \end{bmatrix} = A' \), the eigenvalue of matrix \((A + \delta A)^i\) is \(\lambda_i \), the eigenvalue of matrix \(A' \) is \(\lambda_i' \).

\[
\left(\lambda_i + \delta \lambda_i \right)^i - \lambda_i' = \frac{k^{i-1}}{2} \delta \lambda_i + \frac{k(k-1)}{2} \delta \lambda_{i-1} \approx \frac{k(k-1)}{2} \delta \lambda_i \frac{\delta \lambda_{i-1}}{\lambda_i} = W_i \text{.}
\]

If there exists a positive number \(\epsilon \), \(\forall i, 1 \leq i \leq t \), it holds \(W_i < \epsilon \), then matrix \((A + \delta A)^i\) and matrix \(A' \) are approximate about \(\epsilon \).

Theorem 1 If program \(X' = (A + \delta A)^i X \) and program \(X' = A'X \) are approximate, then two traces which are respectively successive composed by \(k \) same linear algebraic programs are approximate.

If a trace of a homogeneous linear algebraic transition system is successive composed by \(k \) different homogeneous linear algebraic programs, the real homogeneous linear algebraic program is \(X' = (A_1 + \delta A_1)X \), the approximate homogeneous linear algebraic program is \(X' = A_1X \), then the total approximate homogeneous linear algebraic program is \(X' = A_{k-1}A_{k-2} \cdots A_1AX \). The Jordan standard form of real matrix \((A_1 + \delta A_1)(A_2 + \delta A_2) \cdots (A_k + \delta A_k)\) is \(P(A + \delta A)P^{-1} = A' + \delta A' \), the Jordan standard form of approximate matrix \(A_k A_{k-1} \cdots A_1 \) is \(PAP^{-1} = A' \). The \(i \)-th eigenvalue of matrix \((A_1 + \delta A_1)(A_2 + \delta A_2) \cdots (A_k + \delta A_k)\) is \((\lambda_{i,1} + \delta \lambda_{i,1})(\lambda_{i,2} + \delta \lambda_{i,2}) \cdots (\lambda_{i,k} + \delta \lambda_{i,k}) \), the \(i \)-th eigenvalue of matrix \(A_k A_{k-1} \cdots A_1 \) is \((\lambda_{i,1} + \delta \lambda_{i,1})(\lambda_{i,2} + \delta \lambda_{i,2}) \cdots (\lambda_{i,k} + \delta \lambda_{i,k}) \).

\[
\left(\lambda_{i,1} + \delta \lambda_{i,1} \right)(\lambda_{i,2} + \delta \lambda_{i,2}) \cdots (\lambda_{i,k} + \delta \lambda_{i,k}) = W_i \text{.}
\]

If there exists a positive number \(\epsilon \), \(\forall i, 1 \leq i \leq n \), it holds \(W_i < \epsilon \), then matrix \((A_1 + \delta A_1)(A_2 + \delta A_2) \cdots (A_k + \delta A_k)\) and matrix \(A_k A_{k-1} \cdots A_1 \) are approximate about \(\epsilon \).

Theorem 2 Let \(k \geq 1, k \geq j \geq 1 \), all linear algebraic programs \(X' = (A_1 + \delta A_1)(A_2 + \delta A_2) \cdots (A_k + \delta A_k)X \) and...
\[X' = A_1 A_2 \cdots A_k X \] are approximate if and only if two traces which are respectively in turn composed by \(k \) arbitrarily linear algebraic programs \(X' = (A_j + \delta A_j)X \) and \(X' = A_j X \) are approximate.

Theorem 3 If all traces of two homogeneous linear algebraic transition systems are approximate, then two homogeneous linear algebraic transition systems are approximate.

Approximation of homogeneous linear algebraic transition systems can reduce the coefficient bits of homogeneous linear algebraic programs.

IV. Experiments

Let \(X_0 = (100, 10, 10)^T \) be the initial state value and \(\epsilon = 0.04 \) be the error allowed value. The real homogeneous linear algebraic transition system is shown as Fig. 2.

\[
\begin{align*}
&l_1 \quad X' = \begin{pmatrix} 1.001 & 0 & 0 \\ 0 & 1.001 & 0 \\ 0 & 0 & 1.002 \end{pmatrix} X, \\
&l_2 \quad X' = \begin{pmatrix} 2.01 & 0 & 0 \\ 0 & 2.02 & 0 \\ 0 & 0 & 2.01 \end{pmatrix} X, \\
&l_3 \quad X' = \begin{pmatrix} 4.01 & 0 & 0 \\ 0 & 2.02 & 0 \\ 0 & 0 & 2.01 \end{pmatrix} X, \\
&l_4 \quad X' = \begin{pmatrix} 1/8.0601 & 0 & 0 \\ 0 & 1/4.0804 & 0 \\ 0 & 0 & 1/4.0401 \end{pmatrix} X, \\
&l_5 \quad X' = \begin{pmatrix} 0.999 & 0 & 0 \\ 0 & 0.999 & 0 \\ 0 & 0 & 0.998 \end{pmatrix} X, \\
&l_6 \quad X' = \begin{pmatrix} 1.99 & 0 & 0 \\ 0 & 1.98 & 0 \\ 0 & 0 & 1.99 \end{pmatrix} X, \\
&l_7 \quad X' = \begin{pmatrix} 3.99 & 0 & 0 \\ 0 & 1.98 & 0 \\ 0 & 0 & 1.99 \end{pmatrix} X.
\end{align*}
\]

\[
X' = \begin{pmatrix} 1/7.9401 & 0 & 0 \\ 0 & 1/3.9204 & 0 \\ 0 & 0 & 1/3.9601 \end{pmatrix} X.
\]

The approximate homogeneous linear algebraic transition system is shown as Fig. 3.

V. Conclusion

In this paper, the approximation of homogeneous linear algebraic transition system is proposed. Under certain conditions, it can reduce coefficient bits of homogeneous linear algebraic programs. In the future work, we will study approximation of inhomogeneous linear algebraic transition systems.

Acknowledgment

This work is partially supported by the Natural Science Foundation of Guangxi under Grant No. 2011GXNSFA018154 and 2012GXNSFGA060003, the Science and Technology Foundation of Guangxi under Grant No. 10169-1, and Guangxi Scientific Research Project No.201012MS274.

References

