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Abstract

We study statistical properties of inhomogeneous Burgers lattices which are solved by
the discrete Cole–Hopf transformation. Using exact solutions we investigate effect of
various kinds of noise on the dynamics of solutions.

1 Introduction

During the last few years differential-difference nonlinear equations (lattices) became a
subject of great interest in the nonlinear physics. The first (to the best of authors knowl-
edge) integrable discretization of a dissipative system, the Burgers equation, has been
reported in Ref. [1], where using the representation in a Lax form [2] a hierarchy of non-
linear matrix lattices which are linearized by the discrete Cole–Hopf transformation has
been introduced. The mentioned hierarchy includes, as a particular case, equations with
n-dependent coefficients. Further development of a theory of the discretized Burgers equa-
tion has received in the paper [3].
On the other hand in the continuum limit the forced Burgers equation is a general model

describing the evolution of nonlinear diffusive systems under the influence of an external
driver. In particular, the case of stochastic forcing is relevant in physical applications as a
model for the time evolution of the profile of a growing interface [4]. In this context several
studies have been reported for the case of additive noise [5] and multiplicative noise [6].
In the present paper we study inhomogeneous Burgers lattices, i.e. differential difference

equations the homogeneous counterpart of which in the continuous limit is reduced to the
conventional Burgers equation

∂τw(x, τ) = ∂2
xw(x, τ)+2w(x, τ)∂xw(x, τ) (1)

or to one of its modifications including integrable inhomogeneous terms.

2 Burgers lattices

Let us consider a differential-difference equation

dun

dt
= un+1+un−1−2un+fn(t), (2)
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where

fn(t) =
N∑

k=1

a(k)
n (t)un+k (3)

and a(k)
n are arbitrary functions on n and t. Then the relation

vn =
un+1

un
(4)

can be interpreted as a discrete Cole–Hopf transformation [1]. The so introduced func-
tion vn solves the differential difference equation

dvn

dt
= vn(vn+1−vn)+

(
1− vn

vn−1

)
+Fn(t), (5)

where

Fn(t) =
N∑

k=1

[
a

(k)
n+1vn+k − a(k)

n vn

]
vn+k−1 . . . vn. (6)

In what follows equation (5) is refered to as an inhomogeneous Burgers lattice. The name
becomes clear from the continuum limit of (5) which is obtained as the limit ε → 0 with
help of the substitution vn = 1 + εw

(
εn, ε2t

)
.

In order to construct the whole hierarchy of inhomogeneous nonlinear lattices, which
can be linearized by means of Cole–Hopf transformation, we use the method of Ref. [1]
and introduce the operators

Jφ(n) = [φ(n+1)−φ(n)]vn, (7)

Lφ(n) = φ(n+1)vn, L̃φ(n) =
φ(n− 1)
vn−1

. (8)

Then the hierarchy of the nonlinear lattices is given by the formula

dvn

dt
= J

N∑
k=0

(
Lkα(k)

n (t) + L̃kα(k)
n (t)

)
, (9)

where α(k)
n (t) and α̃(k)

n (t) are arbitrary functions of n and t.
The proof of the possibility to linearize (9) by means of the Cole–Hopf transforma-

tion (4) is similar to one given in [1]. It is based on the properties

Lkα(k)
n (t) = α(k)

n+k(t)
un+k

un
, L̃kα̃(k)

n (t) = α̃(k)
n+k(t)

un−k

un
. (10)

Thus the functions u(n) solve the equation

du(n)
dt

=
∑

k

[
α

(k)
n+k(t)un+k + α̃

(k)
n−k(t)un−k

]
. (11)

It is interesting to mention that it follows from the above analysis that in the homo-
geneous case, α(k)

n (t) = α̃
(k)
n (t) = δk,1, we arrive at the discrete Burgers equation in the

form
dvn

dt
= 1− vn

vn−1
. (12)
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By the substitution ṽn = 1/vn it is reduced to[1]

dṽn

dt
= 2ṽn(ṽn+1− ṽn). (13)

The respective continuum limit is provided by the ansatz vn = 1 + εw
(
ε(n− t), ε2t).

Let us consider a shock wave solution of (2)

un = exp(λ1t+k1n)+exp(λ2t+k2n), (14)

where λj = 4 sin2(kj/2), and can be written down in the form

vn = V +∆tanh[(β(n−vt)], (15)

where V = (1/2)(exp k1 + exp k2), ∆ = (1/2)(exp k1 − exp k2), v = (λ2 − λ1)/(k1 − k2),
and β = (1/2)(k1 − k2).

3 Discrete shock waves affected by multiplicative noise

Consider an inhomogeneous Burgers lattice in the form

dvn

dt
= vn(vn+1−vn)+

(
1− vn

vn−1

)
+f(t)(An+1−An)vn, (16)

where f(t) is a random function. This model is linearized by the discrete Cole–Hopf
transformation with the function un solving the equation

dun

dt
= un+1+un−1−2un+f(t)Anun. (17)

In the present section we concentrate on a particular case An = n which corresponds to
the Burgers lattice with the multiplicative noise. The respective shock wave solution reads

vn = (V +∆tanh{β[n−X(t)]}) eF (t), (18)

where X(t) = 2
β [γ1(t)− γ2(t)],

γj(t) =
∫ t

0
cosh[F (t′)+kj ] dt′, and F (t) =

∫ t

0
f(t′) dt′. (19)

Due to the random noise, the shock solution (4) experiences fluctuations. It is therefore
of interest to study statistical properties related to the motion of the shock (such as,
for example, mean displcement, mean velocity, etc.) and also some related correlation
functions. To this end we choose f(t) be a Gaussian random process characterized by the
zero average 〈f(t)〉 = 0 and by the two-time correlator

〈f(t)f(t′)〉 = B(t−t′)D
2τ
exp

(
−|t− t′|

τ

)
(20)

which describes a weakly correlated noise. In (20) D is the noise intensity and τ is the
correlation time of the noise. In the limit τ → 0 (D fixed) the right hand side of (20)
reduces to the δ-function (white noise).
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We now turn our attention to the statistical properties of the shock motion, and to
their long time behaviour. We first observe that due to the multiplicative noise the mean
value of the background exhibits an exponential growth given by

〈v(t)〉 = (V ±∆) exp
(
1
2
〈F 2(t)〉

)
(21)

with

〈F 2(t)〉 = D
[
t+ τ

(
e−t/τ − 1

)]
. (22)

The exponential growth of the background induces a similar growth also in the dynamical
variables characterising the shock motion.
We start with the mean displacement which assymptotics at t → ∞ is given by (the

higher order turms are dropped)

〈X(t)〉 = 2A(k1, k2)
βD

exp
[
1
2
D(t− τ)

]
, (23)

where A(k1, k2) = cosh k1 − cosh k2. Similarly we compute the mean velocity and mean
acceleration of the shock wave

〈Ẋ(t)〉 = A(k1, k2)
β

exp
[
1
2
D(t− τ)

]
, (24)

〈Ẍ(t)〉 = DA(k1, k2)
2β

exp
[
1
2
D(t− τ)

]
. (25)

Thus all the mean value exhibit an exponential grows and in particular we observe a
stochastic acceleration of the shock. The accelerated motion takes place along the positive
or negative direction of the lattice according to the sign of A(k1, k2). The mentioned
exponential behaviour results in anomalous diffusion of the shock which in the assymptotic
region (t→ ∞) is characterised by the mean square displacement

〈X2(t)〉 = cosh(k1+k2)[cosh(k1−k2)−1] 2
D
exp [2D(t− τ)] . (26)

Let us now consider the two time correlation between the shock displacement and the
noise given by

〈X(t1)f(t2)〉 = B(k1, k2)
β

∫ t1

0
〈F (t′)f(t2)〉 exp

[
1
2
〈F 2(t′)〉

]
dt′ (27)

with B(k1, k2) = sinh k1 − sinh k2.
In order to evaluate the correlator in the integrand of (27) we have to distinguish the

the cases t2 > t1 and t2 < t1. In the former case we get

〈F (t′)f(t2)〉 = D

2
e−t2/τ

(
et

′/τ − 1
)

(28)

which when substituted back to (27) yields (for t2 → ∞ and t1 fixed) the assymptotic
behaviour

〈X(t1)f(t2)〉 = ∆B(k1, k2)
2β

e−t2/τe−Dτ/2A(t1, D, τ), (29)
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where A(t1, D, τ) is a constant for t1 fixed. Relation (29) describes a correlation assymp-
totically vanishing as t2 grows. Moreover as τ → 0 a correlation is identically zero (as it
is expected from the causality principle).
In the case t1 > t2 instead, we find in the limit t1 → ∞ (t2 fixed) an assymptotically

growing correlator

〈X(t1)f(t2)〉 = B(k1, k2)
β

(2+Dτ) exp
[
1
2
D(t1 − τ)

]
. (30)

4 Shock wave affected by nonlinear multiplicative noise

Let us now consider one more model with a sorce allowing linearization by the Cole–Hopf
transformation. It reads

dvn

dt
= (1+f(t))vn(vn+1−vn)+

(
1− vn

vn−1

)
. (31)

The respective linear equation reads

dun

dt
= un+1+un−1−2un+f(t)un+1. (32)

The physical meaning of the introduced model becomes clear from its continuum limit,
assuming that f(t) = εF (τ):

∂τu = 2u∂xu+∂2
xu+F (τ)∂xu. (33)

This continuum model has been studied in [6].
Equation (31) admits the shock solution

vn(t) = V +∆tanh[β(n−X(t))] (34)

with

X(t) = vt−X̃(t), X̃(t) = γF (t). (35)

In the above relations we are useing the same notations as in (15), and γ is a constant
given by γ = ∆/β.
We choose f(t) to be a Gaussian white noise, characterised by zero mean value and by

the two-point correlator

〈f(t)f(t′)〉 = D

2
δ(t− t′). (36)

It then follows form (34), (35) that the multiplicative noise induces a random shift of the
shock (centre of mass) position.
The random shift is a Brownian motion with average 〈X̃(t)〉 = 0. From (35) it then

follows that the shock motion is characterised by the mean displacement 〈X(t)〉 = vt, by
a constant mean velocity 〈Ẋ(t)〉, by the two-point correlator

〈X(t1), X(t2)〉 = v2t1t2+γ2Dtm

with tm =min{t1, t2}.
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We now turn our attention to the statistical properties of the shock solution (33). The
white noise f(t) induces an exponential growth of the statistical average. We obtain

〈vn(t)〉 = V +∆
[
1 +

∞∑
α=1

(−1)α exp
[
−2αβ(n− vt) + 1

2
α2∆2〈F 2〉

]]
(37)

with 〈F 2(t)〉 = Dt. It is also of interest to look at the two-time correlator between the
shock and the noise. Taking into account the zero mean value of the noise form (33) we
get

〈vn(t1), f(t2)〉 = ∆
∞∑

α=1

(−1)αC(t1, t2) exp[−2αβ(n− vt1)] (38)

with C(t1, t2) = 〈exp[−α∆F (t1)], f(t2)〉. In the case t2 > t1 we obtain C(t1, t2) = 0, which
implies that the solution at a given time t1 is not influenced by the value of the noise at
a future time t2, in agreement with the causality principle. For t2 > t1 we get instead

C(t1, t2) =
α

2
∆D exp

(
1
2
α2Dt1

)
. (39)

As expected, the correlator exhibits in this case the same exponential growth as the
statistical average (37).
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