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Abstract

A method of quantization of classical soliton cellular automata (QSCA) is put forward
that provides a description of their time evolution operator by means of quantum cir-
cuits that involve quantum gates from which the associated Hamiltonian describing
a quantum chain model is constructed. The intrinsic parallelism of QSCA, a phe-
nomenon first known from quantum computers, is also emphasized.

1 Introduction

Soliton cellular automata (SCA), is a class of cellular automata [1] operating on binary
sequences with an updating rule function f for each cell, that depends on past and present
time cells, the number of which determines the radius r of the automaton [2]. Contrary to
usual CA (that evolve their cells by means of past time cells only), SCA exhibit a variety
of evolution patterns [4, 5, 6] that is mainly known to characterize the temporal behavior
of solutions of non linear PDE’s [7], namely: periodic evolution of particles (i.e. localized
groups of binary cells), or solitonic type of scattering of digital particles, or even breathing
modes of oscillations between particles. All these properties have motivated a number
of suggestive applications for a new kind of computational architecture that will utilize
these evolution patterns of SCA in order to provide a “gateless” implementation of logical
operations [2]. Towards a physical microscopic realization of these suggestions, envisaged
in the context of the new paradigm of Quantum Computing, it is plausible to formulate
SCA in terms of Quantum Mechanics and to investigate the possible quantum effects in
their time evolution. To this end we put forward here the quantization of classical SCA,
and point out their quantum parallelism.

2  Quantization

Let the product Hilbert space H = ®;czH;, where H; = span{|0),|1)} ~ C2. Taken € N,
and consider the subspace H C ‘H where H = ®j,__ H,_, then define the vectors

n—1i

ja") = ®i—pla, ") ©lag) @y lar ;) € H, (1)
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and the dual vectors (a!| € H, with orthonormality relation

1 r

(a'|') = [T(ar 51055 - anlbh) - [T (an 10 )

i=r j=1

1 T
— (5 t+1 pt+1 ° 5 t pt ° | | 5 t t .
H antpbnti an’bn an+j7bn+j
i=r j=1

Recall that for (z,y) € Z3 the Kronecker delta function is defined as 6,, = 1 ® x @ v,
where @ denotes XOR, i.e. modulo-2 addition. Now take Z;QTH = Zg”l \ 0% 1 where
O?**! is the 2r + 1-fold null string, Z;QTH = 731\ {ao}, where f({ap}) = O**1,
the preimage of the null string, and define the one-to-one function [5] f : Z3* ™' —

t2r+1 ty i+l t — t+1 t+1 ot ot t+1
75", as f(a') = a'tt, where of = {alt.,... Y al,al ... ak, .}, and o' =
{afflr, e ffll,a;“,aflﬂ, ... ,aer} where the updated bit takes the value al,'! = 1@,
t4+1 t
G ]:0 a’nJrj‘

Introduce now the quantization of classical cellular automaton by means of the following
quantization diagram.

Z2r+ R Z£2r+1
p 1 Lo
H — H
Uy

This diagram implies that:
Usop (at) = Ulat) = |f (a')) = a™*1) = pof (at) = p (a™+?) = |a*Y). 3)

The transition operator Uy implements in the space of qubits H the update rule f of the
classical bits of the automaton, and acts trivially as the unit operator in the rest space.
Since in order to establish the one-to-one property for f we have excluded the null string
from its domain of values the associated operator U; € End H, is a partial isometry in
Hg-, the orthogonal complement space of Hy = span{|0)}, assuming the decomposition
H = Hy + Hy. To be more specific, let Uy = > |f(a')){a!|, then its isometric

atEZ’Z‘QT"'l
property is due to the following relations:

UUff = Y If @)= Y lahdl,

(at bt)ez?r Tt atezd™ M\ {al}
(4)
Uiup = > YO I1f (@)= D e,
(at,bt)ez?r Tt atezZy \{0}

where the preimage of the null string for e.g. the simplest case of r = 2 is af, = 00100.
Choosing a basis of vectors in H, e.g. the computational basis

B={lla1) @ @ |woppn) : {w} T € Z57 ),
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22r+1 X 22T+1

we can obtain a matrix representation of Uy viz.

Z ®1 507a;+_1i O 60,a$1+1 (507[1% (507a§n+1 517(1%
=7
atez?r+1 0 61, ;‘1-&-12 51,(15{*'150:“% 51,@%‘*151,&%
(5)
5o.at 0
r n+j
R B
L an+J

More explicitly if we partition the basis B into two orthogonal complements corresponding
to invariant and non invariant subspaces of Uy we will obtain for e.g. the case of radius
r = 2, the transition matrix:

1 0
7T2(Uf) = ( 0 0_/1 ) > (6)

where 1, 0, stand for the square 16-dimensional unit and null matrices respectively,
while 0/1, is a N = 16-dimensional matrix with elements along the main antidiagonal
(a1,n,a2,N-1,---,an,1) = (1,...,1,0), and all others been zero.

T
T

O--9—9—0 —o—o o
© —®
o—
Figure 1. The factorization of Figure 2. Quantum circuit implementation of FRT for
Uy in terms of quantum gates for three quantum BS’s with r = 2.

radius r = 2.

3 Hamiltonian model

In order to construct a Hamiltonian model associated with the QSCA that generates the
total evolution of the automaton, and in view of the fact that the time step evolution
operator is determined by unitary NOT viz. Uj|i) = |1 & i) and CONTROL-NOT(CN) viz.
UgN\z'j> = |it @ j) gate operators, cf. its explicit factorization in Fig. 1, we recall here
first the Hermitian operators corresponding to those gates (|i) ® |j) is abbreviated to

lij)). The quantum negation of the i-th qubit is given by the matrix Uy = < 0 )

10
acting non trivially only in the i-th subspace, with associated Hermitian generator given
by Hi, = (0 +o0 ) in terms of Pauli sigma matrices [8]. For the conditional negation of

CN gate Wlth i-control and j-target qubits and ¢ < j the unitary matrix U, = [0)(0]®1+
1) (1| ® 0, = exp (mHCJN> is generated by the Hamiltonian Hyy = 1 (1 — o) (ax - 1).

Correspondingly for i > j, Uy, = 1® [0)(0] + 0 @ [1)(1] = exp (mHgN), and Hely =
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% (1 - aﬁ) (0L —1). These gate operators can be utilized to factorize the Uy that is used
to update each qubit in a given string of qubits of a QSCA. To this end in Fig. 1 we
construct the quantum circuit that provides such a factorization for the special case r = 2;
the generalization to any r is straightforward. Specifically the input state vector in Fig. 1

reads |a’) = |alth, atth al,al 1, al,,5), and is tranformed by Uy to |a'*!) = Uplat) =
2, 1, 1, 2,
Iat“gaai“pa%“, fm+1a Upqo) = UNUn+ nUn+ Uiy "Upy "lay,), where |aft!) = [1 @

t“ &) atJrl & al, & an+1 &) an+2> In Fig. 1 graphically the CN gate is indicated as a
vertlcal line segment with a bullet (control qubit) and a crossed circle (target qubit) at

oo
its ends [10]. Then the total unitary evolution operator Uy =[] Uif =-.. UgUlfU({, is the

1
product of update operators for each qubit in the automaton starting with the first one
U({ , from which all later ones are determined by shifting i.e. Uiil =1® Uif . The total

Hamiltonian Hy = 1111’(1] 1d;éf = > Hzf , is the sum of all Hamiltonians generating each

>0

evolution operator {Uif,i > 0} Since Uf = U} H ZH“ H Ué]\lfz, the corresponding

Hamiltonian at each site i turns out to be H! = Hi + Z ( Hk " HL l) . In view of
k=1

the generators of the quantum gates given above, the H_amiltonlan model of the QSCA
reads,

1

>0

(oh + o) —i—i(l”k — ai+k) (of —1")+ (11'7]“ — aiﬁk) (of, — 1’)] . (7

This can be interpreted as the Hamiltonian operator of a infinite quantum spin chain model
with free boundaries and interactions ranged over r neighbors. Obvious modifications such
that QCSA with periodic boundary conditions, or higher dimensions are in the present
formalism appealing and worth of further study.

4 Quantum fast rule theorem

We turn now to study QSCA in terms of the so called Fast Rule Theorem(FRT) [3] that
provides analytic tools for the classification and the study of types of dynamical evolution
of classical SCA. In the limited space available here we shall confine ourselves to the special
case of periodic particles and provide a quantum circuit of operators that governs the time
development of periodic qubit-particles, i.e. the quantum analogue of periodic particles of
classical CA theory [4, 5, 6].

We recall that a particle is an integer multiple of r + 1 consecutive sites and it can be
a collection of the so called basic strings (BS), which are r + 1 consecutive sites starting
with a boxed site. If a particle consists of a single BS, we call it a simple particle.

Then a basic theorem states the following [4]: Let a single particle OA'A2-.. ALO
with A' # O, A¥ # O, consisting of L basic strings A", A% ..., AL (here O denotes the
null BS consisting of r 4+ 1 zeros), and let & denotes sitewise XOR among bits of the BS.
Suppose that the BS’s A, Al @ A2, A2 @ A3, ... AL"1 @ AL Al contain lg, ly,...,1; 1’s
respectively. Then if such a particle does not split or loose any BS’s from its right end
at all times during its evolution, then at times ¢t = lop + 11 + -+ + I, m < k < L,
it becomes A @ (AMT2AME3 ... ALAOAL. .. A™). Especially for k = L, i.e. at time
t=1o+4 1y + -+ 1 it returns to its initial state A*A%... AL,
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To illustrate the functioning of the quantum FRT i.e. the quantum adaptation of the
preceding theorem, let us consider an initial particle of L = 3 classical BS’s A'A2A3.
Such a classical particle by means of the quantization map p becomes the qubit word
|A'A2A30000). Let us assume that the classical word labelling this state vector evolves
under the previously stated conditions so that the classical FRT applies and assures that
it has a periodic behaviour. Then the quantization map induces into the quantum state
vector the periodic evolution of its classical label word. Namely the quantum state vector
evolves periodically, and we seek to determine the evolution operator that implements this
periodic motion. Assuming we have a sufficient number of null quantum BS’s from each
side of the initial particle state i.e. |A*A2430000]|, let us consider the following two

operators. First, the operator Pl = > |07*1)(z|, which projects each r + 1-fold tensor
xeZ*r+1
product BS state vector onto the r + 1-fold null state vector. With the upper index I de-

notes the fact that the (r41)-fold input vector is placed in the I-th position of a given chain
of tensor product of state vector, and that 77({ acts non trivial only in that I-th subspace.
Second, let us define the collective CN gate operator ué}]v = Ué%l‘]”“ e é?]‘\,]z Uéljg,h, with
control BS placed in the I-th position and target BS placed in the J-th position. This col-
lective CN gate is actually defined as a succession of (r + 1) CN gates for the corresponding
qubits of the (r + 1)-fold tensor product control and the target BS states vectors.

In Fig. 2 we indicate graphically the sequence of operations that transform the initial
state vector |[A1A2430000) into the final state |[OOOO A A2 A3), indicating in this way
its periodic propagation. Each parallel wire in the figure represents an (r + 1)-fold tensor
product of qubits and the operators Py are indicated by boxed zeros, while operators Z/lé“]]\,
are indicated a double circled CN gate symbol. Explicitly the sequence of operations of the
quantum circuit in Fig. 2 reads:

|ALA2A30000) —

|0A' @ A2A © A3A'000) = PIUL UL UL | AT A2A20000) —

|00A? @ ABA%A © A200) = PURUZUZ|OA @ A2AY @ A3A'000) —  (8)
|000A3AY @ A3A% @ A30) = PIUSUSUES|O0A? © A3A%A @ A200) —
0000 A A2 A%) = PIUI UL UL | OO0 AP AT @ A3 A% @ A3O).

5 Quantum parallelism

The quantum description of the cells of a CA in terms of qubits allows for having a su-
perposition a|0) + b|1) at each cell. According to the standard interpretation of Quantum
Mechanics [8] this combination means that we have the state |0) (|1)) with probability
|a|? (|b|?). This is the inherent probabilistic character of QCA that entails two important
advantages of QCA over classical probabilistic (noisy) CA (see e.g. [1]). First, there is an
exponential overhead in storing cell values in QCA over classical CA: an r-radius proba-
bilistic SCA needs at each discrete time step to store N = 22"*! input words in order to
process them later on and to update the current cell value. On the contrary a QSCA may
form and admit as input a superposition state vector

> o woe),

*2r+1 *2r+1
TEL, TEZLy

<

I

|
g
=

I
2=
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which with resources linear in r i.e. 2r 4+ 1 qubits only can constructs an exponential in r
register of 2271 equiprobable input states. Second, there is an exponential overhead in
the updating time of the cells. Once a superposition of all input states has been prepared
as the single state vector [¢), then by acting the linear evolution operator Uy only once
on it i.e.

Uf|w>=%ﬁ 3 Ufm>=%ﬁ S @),

ezt xezy?rTt

we can update all the N state vectors simultaneously. This same exponential acceleration
in storing space and processing time of quantum information has been known in quantum
computation, where it is utilized in a number of tasks such as fast quantum algorithms,
information encoding, cryptography etc. (see [9] and references therein).

Harnessing the space-time resources made available by the quantum parallelism of
QCSA in various applications is an open challenge. The research program initiated here
will require further studies of QSCA both as a new computational machine and as an
implementable physical system. Some of these questions however will be addressed else-
where [11].

6 Discussion

We close by discussing some prospects of our work. Towards a realization of QSCA
as a physical process that could be implemented experimentally and so would potentially
provide a novel quantum computational machine, we may construct an optical circuit made
of elementary passive optical elements i.e. light beam splitters and phase shifters that are
assembled so that they implement the operator Uy of a QSCA. For that purpose we may
utilize the theorem of embedding the SU(2) Lie group into SU(N), which recently [12]
has been used in the form of expressing every unitary matrix by a sequence of embedded
2 X 2 elementary unitary matrices of only two types: one matrix that realizes a beam
splitter with transmission and reflection coefficients determined by the matrix elements
and one that similarly realizes a phase shifter of a classical propagating light wave. By
virtue of this embedding we may factorize the Uy matrix of a r = 2, say QSCA into
elementary matrices of beam splitters and phase shifters. Assuming a two-state encoding
of the qubits of the QSCA cells (e.g. taking the vertical and horizontal polarization states
of a laser beam as |0) and |1)), we may construct the quantum optical analog of the Uy of
the QSCA.

Finally, we should mention a number of ramifications of our QSCA formalism that are
currently also under investigation, namely: QSCA beyond the binary case (this would
involve higher dimensional representations of the discrete Heisenberg group); differential
versus matrix formulation of QSCA (i.e. partial differential operators acting on a space
of multivariable complex polynomials realizing the respective action of the Uy matrix);
and also the case of noisy QSCA (i.e. QSCA evolution that occurs in the presence of of
quantum mechanical noise, exemplified by errors due to random bit-flipping and phase
shifting in the qubits of the QSCA string); this would require the description of QSCA in
terms of trace-preserving operators instead of the unitary operators as in the noiseless case,
and the respective quantization of the classical SCA to be carried out not by Hilbert-space
state vectors but by employing the p-density operator formalism of Quantum Mechanics.
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