
S Yu SAKOVICH

Department of Physics, Middle East Technical University, 06531 Ankara, Turkey

Permanent address:
Institute of Physics, National Academy of Sciences, 220072 Minsk, Belarus
E-mail: saks@pisem.net

Received February 12, 2001; Accepted March 10, 2001

Abstract

It is shown that one system of coupled KdV equations, found in J. Nonlin. Math. Phys., 1999, V.6, N 3, 255–262 to possess the Painlevé property, is integrable but not new.

In our recent paper [1], we found that the system of coupled KdV equations

\begin{align}
 u_t &= u_{xxx} + 9v_{xxx} - 12uu_x - 18vu_x - 18uv_x + 108vv_x, \\
 v_t &= u_{xxx} - 11v_{xxx} - 12uu_x + 12vu_x + 42uv_x + 18vv_x
\end{align}

passes the Painlevé test for integrability well, but we were unable to find a parametric zero-curvature representation for this system there. In this addendum, we show that the system (1) is integrable but not new: it is related by a simple transformation of variables to an integrable system introduced a long time ago by Drinfeld and Sokolov [2].

In their paper, in Example 13, Drinfeld and Sokolov gave the Lax representation

\begin{align}
 L &= (D^3 + 2uD + u_x)(D^2 + v), \\
 A &= D^3 + \left(\frac{6}{5}u + \frac{3}{5}v\right)D + \left(-\frac{3}{5}u_x + \frac{6}{5}v_x\right)
\end{align}

for the system of coupled KdV equations

\begin{align}
 u_t &= -\frac{4}{5}u_{xxx} + \frac{3}{5}v_{xxx} - \frac{12}{5}uu_x + \frac{3}{5}vu_x + \frac{6}{5}uv_x, \\
 v_t &= \frac{3}{5}u_{xxx} - \frac{1}{5}v_{xxx} + \frac{12}{5}vu_x + \frac{6}{5}uv_x - \frac{6}{5}vv_x
\end{align}

It is easy to see that the transformation

\begin{align}
 t \to 10t, \quad u \to -\frac{3}{2}u + \frac{3}{2}v, \quad v \to -2u - 3v
\end{align}

Copyright © 2001 by S Yu Sakovich
changes the system (3) into the system (1). This solves the problem of integrability of the system (1). Moreover, using the scalar spectral problem $L\phi = \lambda \phi$, $\phi_t = A\phi$, where the operators L and A are given by (2) and λ is a parameter, and the transformation (4), we can construct the first-order linear problem $\Psi_x = X\Psi$, $\Psi_t = T\Psi$, or the zero-curvature representation $X_t = T_x - [X, T]$, for the system (1), with the following 5 \times 5 matrices X and T:

$$X = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
2u + 3v & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 3(u - v) & 0 & 1 \\
\lambda & 0 & 0 & 3(u - v) & 0 \\
\end{pmatrix},$$

$$T = \{\{5u_x - 15v_x, -10u + 30v, 0, 10, 0\}, \{5u_{xx} - 15v_{xx} - 20u^2 + 30uv + 90v^2, -5u_x + 15v_x, 5u + 15v, 0, 10\}, \{10\lambda, 0, 30v_x, -30v, 0\}, \{0, 10\lambda, 30v_{xx} - 45uv + 45v^2, 0, -30\}, \{5\lambda u + 15\lambda v, 0, 10\lambda, 30v_{xx} - 45uv + 45v^2, -30v_x\}\},$$

where the cumbersome matrix T is written by rows.

We can conclude now, that all the systems of coupled KdV equations, which passed the Painlevé test in [1], have turned out to be integrable.

The author is deeply grateful to Prof. Atalay Karasu for a copy of [2] and numerous useful discussions, and to the Scientific and Technical Research Council of Turkey (TÜBİTAK) for support.

References
