Solutions for a Class of the Higher Diophantine Equation*

Ran yin-xia
Department of Mathematics, Longnan Teachers College, Longnan, 742500, China
ranyinxia@163.com

Abstract - We studied the Diophantine equation $x^2 + 4^n = y^9$. By using the elementary method and algebraic number theroy, we obtain the following conclusions: (i) Let X be an odd number, one necessary condition which the equation has integer solutions is that $2^n - 1/3$ contains some square factors. (ii) Let X be an even number, when $n = 9k (k \geq 1)$, all integer solutions for the equation are $(x, y) = (0, 4^k)$. When $n = 9k + 4 (k \geq 0)$, all integer solutions are $(x, y) = (\pm 2^{3k+4}, 2^{2k+1})$, when $n = 1, 2, 3, 5, 6, 7, 8 \mod 9$ the equation has no integer solution.

II. Preliminaries

Lemma 1 Let M is a unique factorization domain, k is a positive integer, $k \geq 2$, and $\alpha, \beta \in M$, $(\alpha, \beta) = 1$, so if $\alpha \beta = \gamma^k, \gamma \in M$, then $\alpha = \varepsilon_1 \mu^l, \beta = \varepsilon_2 \nu^k, \mu, \nu \in M$, and $\varepsilon_1 \varepsilon_2 = \varepsilon^k$, where $\varepsilon_1, \varepsilon_2, \varepsilon$ are units in M.

Lemma 2 For the diophantine equation $x^2 + 1 = 2^k y^9$, there are following conclusions:
(i) If $k = 0$, the equation only has integer soution $(x, y) = (0, 1)$.
(ii) If $k = 1$, the equation only has integer soutions $(x, y) = (\pm 1, 1)$.
(iii) If $k = 2, 3, 4, 5, 6, 7, 8$, all equations have no integer solutions.

proof: (i) (ii) By lemma 1, it is easy to prove, (iii) Obviously, x is an odd number, then $x^2 = 1 \mod 4$, and $x^2 + 1 = 2 \mod 4$. But if $k = 2, 3, 4, 5, 6, 7, 8$ then $x^2 + 1 = 2^k y^9 \equiv 0 \mod 4$. This is a contradiction. So $x^2 + 1 = 2^k y^9 (k = 2, 3, 4, 5, 6, 7, 8)$ has no integer solutions.

III. Proof of Theorem

(i) First, suppose $x = 1 \mod 2$, in $Z[i]$, $x^2 + 4^n = y^9$ can be decomposed into as follows $(x + 2^i)(x - 2^i) = y^9, x, y \in Z$.

Let $\delta = (x + 2^i, x - 2^i)$, be aware of $\delta | 2x, 2^{n+1}i$, δ can only be $1, 1 + i, 2$. But $x \equiv 1 \mod 2$, so $x + 2^i \equiv 1 \mod 2$, then $\delta \neq 2$. If $\delta = 1 + i$, then $2 = N(1 + i)|N(x + 2^i) = x^2 + 2^{2n}$.

However $x = 1 \mod 2$, So the integer x does not exist. As a result, $\delta = 1$. Thus, by lemma 1, $x + 2^i = (a + bi)^9, x, a, b \in Z$.

$x = a^9 - 36a^7b^2 + 126a^5b^4 - 84a^3b^6 + 9ab^8$,
$2^i = b(9a^8 - 84a^6b^2 + 126a^4b^4 - 36a^2b^6 + b^8)$.

* This work is partially supported by NSF Grant #2003168 to H. Simpson and CNSF Grant #9972988 to M. King.
So \(b = \pm 1, \pm 2' \) \((1 \leq t \leq n-1)\), \(\pm 2^n\).

When \(b = \pm 1\), \(9a^8 - 84a^6 + 126a^4 - 36a^2 + 1 = \pm 2^n\), that is \(9a^8 - 84a^6 + 126a^4 - 36a^2 = \pm 2^n - 1\), so \(a\) is odd. Thus \(x = a^9 - 36a^7 + 126a^5 - 84a^3 + 9a\) is even, this contradict with \(x \equiv 1 \pmod{2}\).

When \(b = \pm 2' \) \((1 \leq t \leq n-1)\), \(9a^8 - 84a^6b^2 + 126a^4b^4 - 36a^2b^6 + b^8 = \pm 2^n\), so \(a\) is even. Thus \(x = a^9 - 36a^7b^2 + 126a^5b^4 - 84a^3b^6 + 9ab^8\) is even, this contradict with \(x \equiv 1 \pmod{2}\).

When \(b = 2^n\), \(9a^8 - 84a^6b^2 + 126a^4b^4 - 36a^2b^6 + b^8 = 1\), that is \(9a^8 - 84a^6b^2 + 126a^4b^4 - 36a^2b^6 = 1 - 2^n\), so \(a^2(3a^6 - 28a^4b^2 + 42a^2b^4 - 12b^6) = 1 - 2^n\), thus, only when 2\(^{n+1}\) contains some square factors, the equation may have integer solutions.

When \(b = -2^n\), \(9a^8 - 84a^6b^2 + 126a^4b^4 - 36a^2b^6 + b^8 = -1\), that is \(9a^8 - 84a^6b^2 + 126a^4b^4 - 36a^2b^6 = -1 + 2^n\), so 2\(^{n+1}\) \(\equiv 0 \pmod{3}\), however, 2\(^{n+1}\) \(\equiv 2 \pmod{3}\), this is a contradiction.

So, when \(x \equiv 1 \pmod{2}\), one necessary condition which the equation has integer solutions is that 2\(^{n+1}\) contains some square factors.

(ii) Second, suppose \(x \equiv 0 \pmod{2}\), thus \(y \equiv 0 \pmod{2}\). Now make \(x = 2x_1, y = 2y_1\), then the equation can be turned into \(x_1^2 + 4^{n-1} = 2^7y_1^9\), obviously \(x_1 \equiv 0 \pmod{2}\), then make \(x_1 = 2x_2\), it can be \(x_2^2 + 4^{n-2} = 2^5y_1^9\), also make \(x_2 = 2x_3\) again, it can be \(x_3^2 + 4^{n-3} = 2^3y_1^9\), also make \(x_3 = 2x_4\) again, it can be \(x_4^2 + 4^{n-4} = 2y_1^9\), now make \(x_4 = 2x_5, y_1 = 2y_2\), it can be \(x_5^2 + 4^{n-5} = 2^8y_2^9\), then make \(x_5 = 2x_6\), it can be \(x_6^2 + 4^{n-6} = 2^6y_2^9\), also make \(x_6 = 2x_7\) again, it can be \(x_7^2 + 4^{n-7} = 2^4y_2^9\), also make \(x_7 = 2x_8\) again, it can be \(x_8^2 + 4^{n-8} = 2^2y_2^9\) finally, make \(x_8 = 2x_9\), it can be \(x_9^2 + 4^{n-9} = y_2^9\), where \(x_1, x_2, x_3, x_4, x_5, x_6, x_7, y_1, y_2 \in \mathbb{Z}\).

According to such substituted method, it can be concluded:

When \(n = 1 \pmod{9}\), the original equation is equivalent to solving \(x^2 + 4 = y^9\), and according to the above-mentioned regularity, it is finally equivalent to solving \(x^2 + 1 = 2^9 y^9\),

When \(n = 2 \pmod{9}\), it is equivalent to solving \(x^2 + 4^2 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^3 y^9\),

When \(n = 3 \pmod{9}\), it is equivalent to solving \(x^2 + 4^3 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^3 y^9\),

When \(n = 4 \pmod{9}\), it is equivalent to solving \(x^2 + 4^4 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^2 y^9\),

When \(n = 5 \pmod{9}\), it is equivalent to solving \(x^2 + 4^5 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^6 y^9\),

When \(n = 6 \pmod{9}\), it is equivalent to solving \(x^2 + 4^6 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^6 y^9\),

When \(n = 7 \pmod{9}\), it is equivalent to solving \(x^2 + 4^7 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^6 y^9\),

When \(n = 8 \pmod{9}\), the original equation is equivalent to solving \(x^2 + 4^8 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = 2^2 y^9\),

When \(n = 0 \pmod{9}\), it is equivalent to solving \(x^2 + 4^9 = y^9\), and according to the same regularity, it is finally equivalent to solving \(x^2 + 1 = y^9\).

Therefore, by lemma 2, when \(n = 1, 2, 3, 5, 6, 7, 8 \pmod{9}\), the equation has no integer solutions,

when \(n = 0 \pmod{9}\), the equation has integer solutions, and when \(n = 0 \pmod{9}\) that is \(n = 9k (k \geq 1)\), solutions of the equation will must be \((x, y) = (0, 4^k)\), when \(n = 4 \pmod{9}\) that is \(n = 9k + 4 (k \geq 0)\), solutions of the equation will must be \((x, y) = (\pm 2^{4k+4}, 2^{3k+1})\).

IV. Conclusions

When \(x\) is an even number, all integer solutions of the mentioned equation are given, but when \(x\) is an odd number, the equation has not yet been thoroughly solved. And, in this paper, we only give one necessary condition which the
equation has integer solutions. However, the methods using in this paper has important reference significances.

Acknowledgment

The author would like to thank the referee for his valuable suggestions.

References

[2] Nagell T,.Norsk Marem Forenings Skrifter Senel,1921