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Abstract—The cathodic protection method is the most
commonly used method for pipeline anticorrosion. A current is
applied to the protected structure, and the potential is negatively
shifted to the protective potential range by cathodic polarization,
thereby the electrochemical corrosion of the structure is
suppressed. In the cathodic protection system, small distance
between the anode and the structure, high resistivity of the
environment medium , and high requirement for the protection
current, may result in uneven potential distribution on the
structure. Aiming at this problem, the parameter optimization of
the system is studied by boundary element method (BEM), radial
integration method (RIM) and particle swarm optimization (PSO)
based on the cathodic protection potential distribution model.
Then, establish a cathodic protection optimization model that
meets the cathodic protection requirements and has a uniform
potential distribution by optimizing the anode position and the
current density.
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boundary element method(BEM); radial integration method(RIM);
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I. INTRODUCTION
The cathodic protection method is divided into two types:

sacrificial anode cathodic protection (SACP) and the impressed
current cathodic protection (ICCP). The sacrificial anode
method is simple and easy, does not require an external power
supply, and rarely causes corrosion interference. It is widely
used to protect small metal structures or structures in low soil
resistivity environment, such as urban pipe network, small
storage tanks, etc. The impressed current method uses a DC
power source and an auxiliary anode to force the current
flowing to the protected metal from the soil, so that the
potential of the protected object is lower than the surrounding
environment. The protection distance of a single impressed
current cathodic protection station is generally dozens of
kilometers. It is mainly used to protect large metal structures or
structures in high soil resistivity environments, such as long-
distance buried pipelines and large tank groups, etc [1].

In the cathodic protection system, the distribution of
potential and current on the pipeline surface are important
parameters in the pipeline design and maintenance process. It is
not only an important object in daily monitoring work, but also
a criterion for evaluating the effectiveness of the cathodic
protection system [2].

In this paper, in view of the specific problems existing in
the design and maintenance of cathodic protection, firstly, the
existing techniques are used to study the potential distribution
law of the pipeline surface under cathodic protection, and the
main influencing factors of potential distribution are obtained.
Secondly, the optimization of cathodic protection is studied by
boundary element method (BEM), radial integration method
(RIM) and particle swarm optimization (PSO). Based on the
potential distribution model, the optimization of the auxiliary
anode position and current density is carried out to establish a
cathodic protection optimization model that the potential meets
the requirements of cathodic protection and evenly distributed
on the pipeline, which has a strong guiding significance for
practical engineering implementation.

II. THEMATHEMATICAL MODEL OF CATHODIC
PROTECTION SYSTEM

Due to limitation in soil resistivity and non-adjustable
current for sacrificial anode cathodic protection (SACP), the
impressed current cathodic protection (ICCP) method is
usually adopted in the corrosion protection of long-distance
pipelines[3]. The main structure of the impressed current
cathodic protection (ICCP) system is shown in Fig 1.

Fig. 1. The system composition diagram of ICCP.

A. Description Equation
At present, most of the studies on the potential distribution

of cathodic protection system at home and abroad are based on
the steady-state distribution model. The potential distribution
can be described by the Laplace equation:

3rd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2018)

Copyright © 2019, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Atlantis Highlights in Engineering, volume 3

324



02

2

2

2

2

2
2 













z
u

y
u

x
uu (1)

where u is the cathodic protection potential in the area Ω.

If the protected structure is in an active electric field, it can
be expressed by the Poisson equation:
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where eI is the output current for the anode point ),,( zyxX e ,

 is the electric conductivity,   is a dirac function.

B. The Boundary Conditions
The boundary of the numerical model is Ω (the study area)

and the total boundary Γ (Γ envelops Ω). The total boundary Γ
includes the infinite ground surface boundary d , the outer
surface boundary b of the pipeline, and the soil semi-infinite

soil spherical crown boundary  , as is shown in Fig 2.

Fig. 2. The boundary situation diagram..

The boundary conditions are simplified as follows:

1. the ground surface boundary
d is regarded as the

insulation boundary;

2. the potential at infinity is assumed to be zero;

3. the boundary condition of the cathode is defined by a
polarization function.

Therefore, the mathematical model and boundary
conditions are as follows:
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III. BOUNDARY ELEMENT METHOD

The boundary element method (BEM) is a numerical
calculation method developed in the past 18 years. The
engineering application of this method starts from elastic
mechanics, and it’s now applied to many fields such as fluid
mechanics, electromagnetic engineering, civil engineering, etc
[4].

A. Boundary Integral Equation
Multiply the weight function G on both the left and right

sides of the control equation (3), and integrate it over the entire
solution field.

Then the weighted residual expression of equation (3) is

02   GQdudG (4)

For the first term domain integral in the above formula,
after twice fractional integrations and using the Gaussian
divergence theorem, it can be deduced that
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where  is the boundary of the calculation domain  .

If the weight function G is taken as the basic solution of the
problem, the domain integral in the above formula can be
eliminated. The basic solution should satisfy the following
equation

  0,2  pxG  (6)

where  px, is the Dirac delta function, p is the source point
and q is the field point in the area.

When p is a point inside the region Ω, according to the
integral property of the Dirac function, there is

 puGdu 
2 (7)

Substituting the above formula into (5) and substituting the
result into (4), there is

  







  GQddGuduGpu
nn

(8)

It is the integral equation for calculating the potential inside
the study area.

When p is a point on the boundary, the boundary-domain
integral equation of the source point on the boundary can be
derived as:

  







  GQddGuduGpcu
nn

(9)

where c is a constant associated to the p-point geometry, and
for a smooth boundary, c=1/2.

After the formal solution G is determined, the conventional
boundary element method can be used to discrete and solve
equation (9).

B. Deduction of The Basic Solution
The governing equation for the three-dimensional potential

problem is
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The Laplace operator can be expressed as a spherical
coordinate system,
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If the solution medium is an infinite isotropic medium,
according to the symmetry of the Dirac function, the basic
solution can be considered as a function of the radial
coordinate r. Only the radial distribution is considered, there is
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For the above equation, after two times integration in the
radial direction r ,there is

2
1 c
r
cG  (13)

where c2 is a constant solution and will not be considered. In
order to obtain the unknown coefficient c1, consider the
spherical region with the radius ε around the source point p,
and integrate the equation (6), there is

 



  dpqGddpqG ),()],([ 22 (14)

Using the Gaussian divergence theorem, the 3D domain
integral is transformed into boundary area integral, which is
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Since  is a spherical area, there is,
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Take (13) into (15), there is
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According to the property of the Dirac function, there is

  1,  


 dpq (18)

Take (17) and (18) into (14), there is
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Thus, the basic solution to the three-dimensional potential
problem is
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C. Transformation of Domain Integral to The Boundary By
RIM
If the field source Q exists in the calculation domain, the

integral equations (8) and (9) will contain domain integrals. In
order to avoid calculating the domain integrals by dividing the
computational domain into internal grids, use the radial

integration method to transform the domain integrals into
boundary integrals.

Using the radial integration formula [5], the domain
integrals in the integral equations (4) and (5) caused by the
field source term can be calculated by the following boundary
integrals.
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where F is the radial integral, and the formula is
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where α is 1 in the 2D problem and 2 in the 3D problem.

After the concrete forms of the basic solution G and the
field source Q are given, the radial integral F can be obtained
by the equation (22), and then the boundary integral can be
calculated by the equation (21) according to the conventional
boundary element integration method. For some simple
functions, equation (21) can be directly integrated by the
analytical method, and for some complex functions, the
numerical integral formula can be used for calculation.

D. Discretization of Boundary Integral Equation
The first two terms in equation (8) are boundary integrals,

and the boundary integral equation can be converted into
algebraic equations by a conventional discrete solution. As
shown in the Fig 3, the entire boundary is discretely divided
into n units.

Fig. 3. The discrete boundary diagram..

For the node iP , the boundary integral equation (8) can be
discretized into:
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In the formula (23),
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Then the boundary integral equation can be written as
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In the formula (25),
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Then, the formula (25) becomes
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In the above formula,
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Then, the formula (27) becomes
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IV. ANODE POSITION OPTIMIZATION MODEL

Through the theoretical research on the position of the
auxiliary anode embedding, it is found that when the anode
position is close to the buried pipeline, the protective current is
obviously increased. Therefore, the reasonable anode layout
should meet the potential distribution requirements and ensure
a small current density. Therefore, a regional protection
mathematical model for optimizing the auxiliary anode
position and current density will be established. The influence
of the buried depth on the current distribution will be
considered when optimizing the auxiliary anode position [6].

By derivation, a linear equation (29) of anode position,
current density and potential has been obtained. Accordingly,
the potential of each node is not only affected by its own
position, but also related to the anode position and current
density. The purpose of the cathodic protection optimization
design is to make all potentials of the pipeline surface reach
requirements. For the protected structure, it must be guaranteed
that its potential is lower than pu , that is

puu  (30)

where pu is the cathodic protection potential, and its value is
determined by the characteristics of the metal and the medium.

Therefore, the following cathodic protection optimization
model is established:
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where eQ is the current for the anode; eX is the position of
the anode; N is the number of nodes.

For the convenience of calculation, the equation (30) is
used as the constraint of the formula (31), and the
compensation coefficient method is used to determine the
objective function as:
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where k is a penalty factor, usually a large positive number, iu
is potential value of the i-th node of the surface, R represents
the limit value of source point position in the model.

V. PARTICLE SWARM OPTIMIZATION ALGORITHM

For an optimization problem: min f(X) ， the specific
process is as follows:

Fig. 4. The calculation flow chart for PSO.

1. Initialization: set the parameters (number of particles n,
maximum iteration number, update the coefficients in the
formula), randomly generate n initial particles }X,...,X,{X n21 ;

2. Evaluate each particle and calculate the fitness value of
each particle )}f(X),...,f(X),{f(X n21 ;

3. Update the local optimal {Pbest1,Pbest2,...Pbestn} and
global optimal Gbest for each particle;

4. Update each particle, that is to change X constantly:
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where k represents the k-th iteration, i represents the i-th
particle, and w, c1, and c2 are parameters.

5. If the maximum iteration number iteration is not reached,
go to step 2 to continue iteration, otherwise output Gbest.

So it can be seen that the entire iteration is moving in the
direction of Gbest.
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VI. CASE STUDY

A. Model Description
The following is an example to verify the theory and

calculation method. The diameter of the pipeline in the area is
ф914*28, the buried depth is 2m, the distribution position and
the length of the pipeline are as shown in the figure (Note: the
coordinate system shown in the figure is established with the
left end of the pipeline as the coordinate origin). Due to the
large protection area, three sets of anodes are used, and the
material is high silicon cast iron. It is necessary to select a
reasonable protection potential value pu in the calculation. It
is not appropriate to set the -1.15V as the upper limit. If the -
0.85V is selected, the pipe potential will be concentrated at
around -0.85V, resulting in partial protection of the pipe.
Therefore, -0.9V is selected as the calculation standard pu .
Assume that the soil is evenly distributed in the model, and the
soil resistivity is 30 m .

Fig.5. Distribution of the model.

B. Results and analysis
After 80 iterations, the best anode positions are A (6.0, 22.4,

1.4), B (45, 19, 1.4), C (62, 41.5, 2), and the current output
density is 6 mA/m2, 8 mA/m2 and 4 mA/m2. Because of the
random property of PSO, the optimization results are different
each time. In order to obtain better results, the optimization is
repeated multiple times, and the optimal results are taken. After
that, calculate the potential value of each node, as is shown in
Table I, and potential distribution curve is shown in Fig 4.

TABLE I. THE POTENTIAL VALUE OF EACH NODE

Node Potential Node Potential Node Potential
1 0.8537 18 1.0877 35 1.0298
2 0.8664 19 1.1060 36 09940
3 0.8710 20 1.1298 37 0.9781
4 0.8734 21 1.1590 38 0.9605
5 0.8840 22 1.1758 39 0.9489
6 0.8944 23 1.1868 40 0.9345
7 0.90622 24 1.1906 41 0.9206
8 0.9178 25 1.1976 42 0.9050
9 0.9290 26 1.1862 43 0.8964
10 0.9558 27 1.1780 44 0.8925
11 0.9497 28 1.1576 45 0.8854
12 0.9540 29 1.1458 44 0.8727
13 0.9665 30 1.1375 45 0.8680
14 0.9807 31 1.1298 46 0.8540
15 0.9920 32 1.1277 47 0.8557
16 1.0356 33 1.1193 50 0.8503
17 1.0758 34 1.0965

Fig.4. Distribution of the potential.

It can be seen in the Fig 4 that the potentials of the nodes in
the pipeline are within the protection potential range, and both
float within a small range of the selected reference -0.7V,
indicating that the potential distribution is relatively uniform
and achieves the purpose of optimization.

VII. CONCLUSION
The study has drawn a series of conclusions, mainly due to

the following points.
1. The potential distribution of buried pipeline in cathodic
protection can be described by equations according to the
nature of the electrostatic field.
2. In this paper, the three-dimensional boundary element
numerical solution is used to design the regional cathodic
protection system, and the auxiliary anode depth is dissolved
into the auxiliary anode position optimization process. The
mathematical model is closer to the actual situation, and the
calculation result is more accurate.
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