An asymptotic expansion of the q-gamma function $\Gamma_q(x)$

M MANSOUR

Mansoura University, Mansoura, 35516, Egypt.
E-Mail: mansour@mans.edu.eg

Received February 20, 2006; Accepted June 5, 2006

Abstract

In this paper, we get an asymptotic expansion of the q-gamma function $\Gamma_q(x)$. Also, we deduced q-analogues of Gauss’ multiplication formula and Legendre’s relation which give the known results when q tends to 1.

1 Introduction

Analogous to Gauss’ infinite product representation for the gamma function [6]

$$\Gamma(x) = x^{-1} \prod_{n=1}^{\infty} [(1 + 1/n)^x(1 + x/n)^{-1}]$$ \hspace{1cm} (1.1)

the q–gamma function $\Gamma_q(x)$ is defined by [4]

$$\Gamma_q(x) = \frac{(q, q)_\infty}{(q^x, q^x)_\infty} (1 - q)^{1-x}, \quad 0 < q < 1,$$ \hspace{1cm} (1.2)

where the q–shifted factorials are defined by [5]

$$(a, q)_0 = 1,$$

$$(a_1, \ldots, a_r; q)_k = \prod_{i=1}^{r} \prod_{j=0}^{k-1}(1 - a_i q^j), \quad k = 0, 1, 2, \ldots ,$$

$$(a; q)_\infty = \prod_{i=0}^{\infty}(1 - a q^i).$$

This function is a q–anologue of the gamma function since we have

$$\lim_{q \to 1} \Gamma_q(x) = \Gamma(x)$$ \hspace{1cm} (1.3)

The q–gamma function satisfies the functional equation

$$\Gamma_q(x + 1) = (1 - q^x)/(1 - q)\Gamma_q(x), \quad \Gamma_q(1) = 1,$$ \hspace{1cm} (1.4)

which is a q–extension of the well-known functional equation

$$\Gamma(x + 1) = x\Gamma(x), \quad \Gamma(1) = 1.$$ \hspace{1cm} (1.5)

Boher, H. and Mollerup , J. (1922) proved the following theorem for $\Gamma(x)$ function

Copyright © 2006 by M Mansour
Theorem 1. If a function $f(x)$ satisfies the following three conditions, then it is identical in its domain of definition with the gamma function:

1. $f(x + 1) = xf(x)$,
2. $f(1) = 1$,
3. The domain of definition of $f(x)$ contains all $x > 0$, and is log convex for these x.

For the proof of this theorem see [2]. In 1978, R. Askey [3] gave the q-analogy of this theorem.

Theorem 2. If a function $f(x)$ satisfies the following three conditions

1. $f(x + 1) = [x]q f(x)$ for some q, $0 < q < 1$,
2. $f(1) = 1$,
3. $\log f(x)$ is convex for $x > 0$,

then $f(x) = \Gamma_q(x)$, where $[x]q = \frac{1-q^x}{1-q}$.

2 The behavior of the function $\Gamma_q(x)$ for large x

In order to study the behavior of the function $\Gamma_q(x)$ for large x, we consider a function of the form

$$f(x) = (1 - q)^{1/2 - x} e^{\mu(x)}.$$ \hspace{1cm} (2.1)$$

Our goal is to make $f(x)$ satisfy the basic conditions for the gamma function by choosing $\mu(x)$ in an appropriate way.

$$\frac{f(x + 1)}{f(x)} = \frac{e^{\mu(x+1) - \mu(x)}}{1 - q}$$ \hspace{1cm} (2.2)$$

Then $f(x)$ satisfy condition (2) in Theorem (2) iff

$$\mu(x) - \mu(x + 1) = -\log(1 - q^x),$$ \hspace{1cm} (2.3)$$

holds for $\mu(x)$.

Let $g(x)$ is the write side of the equation (2.3). If we set

$$\mu(x) = \sum_{n=0}^{\infty} g(x + n)$$ \hspace{1cm} (2.4)$$

then equation (2.3) holds, provided that the series in equation (2.4) converges. In order to study the convergence, we will combine this with an approximation of the function $\mu(x)$. Let us begin by considering the expansion

$$-\log(1 - z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, \quad |z| < 1$$ \hspace{1cm} (2.5)$$

If we put $z = q^x$ the expansion is valid whenever $x > 0$ and $0 < q < 1$.

$$g(x) = -\log(1 - q^x) = \sum_{n=1}^{\infty} \frac{q^{nx}}{n}.$$
An asymptotic expansion of the q-gamma function $\Gamma_q(x)$. 481

Now we can approximate $g(x)$. If the integers 1, 2, 3, ... are all replaced by 1, then the result is an infinite geometric series having $\frac{q^x}{1 - q^x}$. But $g(x)$ is positive, hence

$$0 < g(x) < \frac{q^x}{1 - q^x} \quad (2.6)$$

Since every term of the series in equation (2.4) is positive, it suffices to show the convergence of

$$\sum_{n=0}^{\infty} \frac{q^{x+n}}{1 - q^{x+n}} \quad (2.7)$$

which converges from the ratio test. This gives the approximation

$$0 < \mu(x) < \frac{q^x}{(1 - q) - q^x} \quad (2.8)$$

i.e.

$$\mu(x) = \frac{\theta q^x}{(1 - q) - q^x}, \quad (2.9)$$

where θ is a number independent of x between 0 and 1.

Now let us consider the condition (3) of theorem (2). The factor $(1 - q)^{1/2 - x}$ in equation (2.1) is log convex because the second derivative of its logarithm equal to zero for all x. If the factor $e^{\mu(x)}$ is log convex, in other words $\mu(x)$ is convex, then $f(x)$ also satisfies condition (2.4). The function $\mu(x)$ is convex if the general term of the series $g(x + n)$ is convex. To show this, it suffices to prove the convexity of $g(x)$ itself. But we have

$$g''(x) = \frac{q^x \log^2(q)}{(1 - q)^2} > 0 \quad (2.10)$$

By a suitable choice of the constant a, we get

$$\Gamma_q(x) = a(1 - q)^{1/2 - x} e^{\frac{\theta q^x}{(1 - q) - q^x}} \quad (2.11)$$

If we let x be an integer n, we get the approximation

$$[n]_q! = \Gamma_q(n + 1) = a(1 - q)^{-1/2 - n} e^{\frac{\theta q^{n+1}}{(1 - q) - q^{n+1}}} \quad (2.12)$$

Now we will determine the exact value of the constant a. Let p be a positive integer. We consider the function

$$f(x) = [p]_q^p \Gamma_q^p((x/p)/p) \Gamma_q^p((x + 1)/p) \ldots \Gamma_q^p((x + p - 1)/p), \quad x > 0 \quad (2.13)$$

The second derivative of $\log[p]_q^x$ is zero, and $\Gamma_q^p((x + k)/p)$ is log convex $\forall k = 1, 2, 3, ...$ then $f(x)$ is log convex. Also,

$$f(x + 1) = [p]_q^p \Gamma_q^p((x + p)/p) \Gamma_q^p((x + p)/p) f(x)$$

Then the function $f(x)$ satisfies the conditions (1) and (3) in theorem (2). Then

$$[p]_q^p \Gamma_q^p((x + 1)/p) \Gamma_q^p((x + 1)/p) \ldots \Gamma_q^p((x + p - 1)/p) = a_p \Gamma_q(x), \quad (2.14)$$
where \(a_p \) is a constant depending on \(p \) and by putting \(x = 1 \), we get

\[
a_p = [p]_q \Gamma_q(1/p) \Gamma_q(2/p) \cdots \Gamma_q(p/p).
\] (2.15)

But the \(q \)-gamma function \(\Gamma_q(x) \) function is defined by

\[
\Gamma_q(x) = \lim_{n \to \infty} \frac{(q, q)_n}{(q^x, q)_n} (1 - q)^{1-x},
\] (2.16)

then

\[
\Gamma_q(k/p) = \lim_{n \to \infty} \frac{(q^k, q^p)_n}{(q, q^p)_n} (1 - q^p)^{1-k/p}
\] (2.17)

and

\[
a_p = [p]_q (1 - q^p)^{(p-1)/p} \lim_{n \to \infty} \frac{((q^p, q^p)_n)^p}{\prod_{k=1}^p (q^k, q^p)_n}
\] (2.18)

By using equation (2.12) and the relation

\[
[q]^! = \frac{(q, q)_n}{(1 - q)^n},
\] (2.19)

then

\[
((q^p, q^p)_n)^p = a^p (1 - q^p)^{-p/2} e^{\frac{\theta q^p(n+1)}{(1-q) - q^p(n+1)}}.
\] (2.20)

Also,

\[
\prod_{k=1}^p (q^k, q^p)_n = (q, q)_n p
\]

\[= a(1 - q)^{-1/2} e^{\frac{\theta q^{p+1}}{(1-q) - q^{p+1}}}.
\]

Then

\[
a_p = [p]^{1/2}_q a^{p-1}
\] (2.21)

From the equations (2.15) and (2.21), we have

\[
a_2 = [2]^{1/2}_q a, \quad a_2 = [2]_q \Gamma_q(1/2),
\] (2.22)

then

\[
a = [2]^{1/2}_q \Gamma_q(1/2)
\] (2.23)

and

\[
a_p = [p]^{1/2}_q ([2]_q \Gamma_q^2(1/2))^{(p-1)/2}
\] (2.24)

Now in this paper we get the following expressions

\[
\Gamma_q(x) = [2]^{1/2}_q \Gamma_q(1/2)(1 - q)^{1/2-x} e^{\frac{\theta q^x}{(1-q) - q^x}}, \quad 0 < \theta < 1,
\] (2.25)

\[
[q]^! = [2]^{1/2}_q \Gamma_q(1/2)(1 - q)^{-1/2-n} e^{\frac{\theta q^{n+1}}{(1-q) - q^{n+1}}}.
\] (2.26)
An asymptotic expansion of the q-gamma function $\Gamma_q(x)$.

\[\Gamma_q(x/p)\Gamma_q((x+1)/p)\ldots\Gamma_q((x+p-1)/p) = [p]_q^{1/2-x}(2q\Gamma^2_q(1/2))^{(p-1)/2}\Gamma_q(x). \] (2.27)

In particular, for $p = 2$

\[\Gamma_q(x/2)\Gamma_q((x+1)/2) = [2]_q^{1-x}\Gamma_q(1/2)\Gamma_q(x). \] (2.28)

The formulas in equations (2.25) and (2.26) are similar to Stirling’s formulas in the usual case. The functional equation (2.27) is called q–Gauss’ multiplication formula. Also, equation (2.28) is called q–Legendre’s relation.

If we take the limit as $q \rightarrow 1$, then we get

\[\Gamma((x+p-1)/p) = p^{1/2-x}(2\Gamma^2(1/2))^{(p-1)/2}\Gamma(x), \] (2.29)

and

\[\Gamma(x+1/2) = 2^{1-x}\Gamma(1/2)\Gamma(x). \] (2.30)

These relations are called Gauss’ multiplication formula and Legendre’s relation (resp.) [1].

References