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Abstract- Existed simulation works are always too dependent 
on a kind of particular techniques or tools to perform 
horizontal comparison and integration. There is no formal 
description for the simulation objects which leads to the lack of 
semantic support in the simulation. In order to guarantee the 
reusability and interoperability of heterogeneous models and 
services in satellite network simulation and provide 
verification support, a method based on ontology engineering 
is proposed. Based on the concept of simulation verification 
with semantic support, the purpose and requirements of 
applying ontology engineering in satellite network simulation 
are identified. A test is performed as to a specific simulation 
task, and the results show that, besides the semantic support, 
the former method can provide significant improvement in 
efficiency, which is over 200% in comparison with the latter 
one. It is concluded that it is quite feasible to apply ontology in 
the area of satellite network simulation. 
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I.  INTRODUCTION 

Because of the specific attributes of satellite network and 
particularity of space environment, research on satellite 
network simulation gains more and more attention recently. 
Currently, the achievements in the areas of constellation 
configuration design, network topology, inter-satellite links 
(ISL), and route strategies in satellite network are relatively 
abundant [1,2,3], but these works are always heavily dependent 
on a kind of particular techniques or tools so that it is 
difficult to perform horizontal comparison and integration. 
Most of all, there is no formal description for the simulation 
objects, which leads to the lack of semantic support in the 
simulation. In order to solve these problems, it is required to 
apply ontology engineering to provide correctness 
verification of simulation, i.e. to prove the consistency of 
simulation project itself, and furthermore to guarantee the 
reusability and interoperability of heterogeneous models and 
services in satellite network simulation. 

II. VERIFICATION WITH SEMANTIC SUPPORT 

There exists disbelief in simulation verification all the 
time, and one of the most important reasons is the lack of 
correctness confirmation of simulation itself. Similar to 
software testing, simulation is considered as only an 
experimental method to prove something is wrong rather 

than to prove it is right. Pure simulation lacks semantic 
support, and it can only verify a subset in the application 
domain. If something wrong is discovered, we can conclude 
that the simulation goals or models really have problems. 
But even if simulation is performed as expected, there is still 
no guarantee on the credibility of simulation procedure itself. 
Only when the simulated domain is proven to be consistent 
and correct, can simulation provide “real verification”. 

Although it is impossible to prove correctness by means 
of software testing, several proving methodologies have been 
proposed long ago. For example, correctness proving based 
on formal semantic introduced by Hoare [4] is to perform 
logic deduction and reasoning in view of system semantic, 
which can prevent unilateral result. Similarly, as to the lack 
of semantic support in simulation, we can also use 
description logic and ontology which are based on FOL 
(first-order logic) to establish a provable simulation 
framework, so as to provide proof for semantic consistency 
at higher level. When the premise is guaranteed that 
simulation hierarchy is consistent, we can perform qualified 
analysis by simulation experiment on lower level to provide 
fine-grained verification. 

Ontology can provide a bridge to build a sharable 
architecture for the problem domain without concept 
ambiguity, which is the key to support the semantic 
consistency in simulation. In addition, it is necessary to 
deduce in descriptive knowledge base according to a set of 
specific rules. Ontology and description logic are ideal to 
provide such a logic descriptive method. As a result, it is not 
only necessary but also feasible to apply ontology 
engineering to provide formal verification for simulation 
application. 

III.  CONCEPTS OF ONTOLOGY ENGINEERING 

Ontology is an explicit description of a domain, including 
concepts, properties and attributes of concepts, constraints on 
properties and attributes, and often includes individuals. 
With ontology, we can define a common vocabulary and a 
shared understanding of a domain [5]. Ontology engineering 
means defining concepts in the domain (classes), arranging 
the concepts in a hierarchy (subclass-superclass hierarchy), 
defining which attributes and properties classes can have and 
constraints on their values, and defining individuals and 
filling in values. Analysis and evaluation is one of main 
research issues in ontology engineering. 
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The aim to develop ontology is to share common 
understanding of the structure of information among people 
and among software agents, especially to enable reuse of 
domain knowledge and to introduce standards to allow 
interoperability. With ontology, it will be easier to change 
domain assumptions and re-use domain and operational 
knowledge separately. 

IV. APPLICATION OF ONTOLOGY ENGINEERING 

A. Operational View 
By applying ontology engineering, the simulation 

framework can set up an operational view for any simulation 
task. 
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Figure 1.  Operational view 

The operational view is the description of the entities and 
services involved in a mission performed in satellite network, 
and can be divided into 3 sub-views. In the entity view, the 
entities are organized in a layered architecture, and it is also 
required to provide description of relationship and 
constraints among entity nodes. Based on the entity view, the 
service view put focus on the simulation-specific services 
and a set of supporting services. Simulation-specific services 
are types of services in the areas of constellation 
configuration, communication links, route protocols, 
topology, network management, and network security in 
satellite network, which can be invoked in simulation system. 
Supporting services includes data storage, data exchange, 
data federation, and core service to provide infrastructure for 
simulation system. On the basis of the entity and service 
views, the purpose of the mission view is to provide top-
level mission concept, the description of information flow 
and events/interactions, and status transition array. After 
performing consistency verification by using reasoning 
engine, we can really develop a simulation application to 
implement simulation analysis. 

B. Ontology-development related tools  
We use Protégé-3.2 as the ontology-development tool, 

which supports a rich knowledge model and is open-source 
and freely available [6]. In addition, in order to implement 
consistency deduction, a practical OWL-DL reasoner named 
Pellet is used as DIG (Description Logic Implementers 
Group) engine. According to the visualization requirements, 

visualization plug-in (graphviz) is also configured in Protégé. 
These tools can be used as follows: 
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Figure 2.  Ontology-development related tools 

① Install and configure ant after installing JDK; 
② Build Pellet with ant; 
③ Install Protégé; 
④ Install graphviz to provide visual presentation; 
⑤Configure the OWLvz tab in Protégé with graphviz; 
⑥Configure Pellet as the reasoning engine of Protégé; 
⑦ Develop simulation framework in Protégé; 
⑧ Provide consistency proving with simulation 

framework; 
⑨ Map the OWL code generated by simulation 

framework to IDE developing environment; 
⑩ Develop simulation application. 

C. Developing Ontology In Satellite Network 
1) Define Classes and the Class Hierarchy 

Class is a concept in the domain and is a collection of 
elements with similar properties. Classes usually constitute a 
taxonomic hierarchy (a subclass-superclass hierarchy) and a 
class hierarchy is usually an IS-A hierarchy. In satellite 
network simulation, we can establish a class hierarchy 
according to the constitution and latitude of satellite entities, 
including satellite-network, constellation, single node 
(satellite and station), and single component (on-board or 
grounded devices) at the top level, which can be divided into 
lower levels furthermore (shown in Fig. 3).   

2) Disjoint Classes 
Classes are disjoint if they cannot have common 

instances, and disjoint classes cannot have any common 
subclasses either. For example, MEO-Satellite, GEO-
Satellite and LEO-Satellite are disjoint. 

3) Define Properties of Classes – Slots 
Slots in a class definition describe attributes of instances 

of the class and relations to other instances. There are 
different types of properties, including “intrinsic” properties 
(orbit planes of constellation), “extrinsic” properties (name 
of satellite), parts (payload on satellite), and relations among 
objects (owner of a on-board device (satellite)). In addition, 
it is necessary to define property constraints (facets), which 
describe or limit the set of possible values for a slot. For 
example, IntraPlaneLinks_LEO is a sub-property of 
IntraPlaneLinks property. It is a datatype property, which has 
its own datatype, range, and allowed values besides the 
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domain constraints (shown in Fig. 4). As to object property, 
it is useful to inverse slots. Inverse slot contain redundant 
information, but allow acquisition of the information in 
either direction, enable additional verification, and allow 
presentation of information in both directions. In Fig. 4, it is 
shown that IsDeviceof and HasDevice are inverse slots. 

4) Create an instance of a class 
When we create an instance of a class, the class becomes 

a direct type of the instance. Any superclass of the direct 
type is a type of the instance. At this stage, we must assign 
slot values for the instance frame, and slot values should 
conform to the facet constraints. In fact, this work is always 
done when we establish the mission view, because only at 
that time can we figure out the real slot values corresponding 
to the current mission. 

The service view and mission view can be established in 
the same way. Finally, by using Pellet as reasoning engine, 
we can detect the violation of property constraints, cycles in 
the class hierarchy, terms that are used but not defined, 
interval restrictions that produce empty intervals (min > 
max), so as to confirm the consistency of the simulation case. 
In addition, classes with a single subclass, classes or slots 
with no definitions, slots with no constraints can also spotted. 
Fixing these problems is helpful to improve the quality of 
simulation application. 

V. TEST AND RESULTS 

The best test is the application for which the ontology 
was designed. So we set up a specific mission view to 
describe the simulation analysis of the coverage 
characteristics in satellite network, and perform consistency 
verification on the description. After getting the confirmed 
results, we develop a simulation application to test whether 
this ontology-based approach is applicable. 

Coverage characteristics are very important for satellite 
network to perform well. It is not enough to simulate the 
coverage characteristics of a single satellite; coverage 
characteristics of the whole constellation or network are also 
needed to form a consistent system. In addition, besides 
coverage rate, there are many other important criteria 
including coverage time, coverage continuity, switching 
times, and coverage degree, which have constraints between 
each other. As a result, it is suitable to take such a task as an 
example to test the feasibility of the approach we proposed.  

We want to build a simulation application to analyze the 
coverage characteristics in 4 cases: MEO (Medium Earth 
Orbit) constellation to ground, MEO constellation to LEO 
(low Earth Orbit) satellites, GEO (geostationary orbit) 
constellation to MEO satellites, and GEO constellation to 
LEO satellites. The main parameters of satellite network to 
be simulated are shown in Table I. And station node on the 
ground is selected as A(N: 39.906193，E: 116.388039). 

TABLE I.  CONFIGURATION OF SATELLITE NETWORK  

Orbit type GEO MEO LEO 
altitude(km) 35786 11946 1000 
inclination(°) 0 45 99.6 
period(s) 86164.09 24685.75 6307.12 
Number of satellites 3 12 4 

Number of orbits 1 4 4 
Phase factor  — 1 — 

We developed the simulation in two different ways. The 
first method is to develop the application all at once 
according to the requirement description based on HLA in 
Visual C++ developing environment, which is called Method 
1. In this way, we have spent much time on coding and 
debugging, especially on modifying the improper 
relationship between federate members. Setting simulation 
period as 86400s and step as 60s, we can get the simulation 
results shown in Table II. 

TABLE II.  SIMULATION RESULTS (METHOD 1) 

Type Average 
coverage 
time  

Coverage 
rate (%) 

Average 
switching 
times 

MEO-ground(A) 8617.3 9.97 9.537 
MEO-LEO1 1237.3 1.43 43.258 
GEO-MEO21 8766.1 10.14 11.278 
GEO-LEO1 2005.0 2.32 51.944 

The other method (Method 2) is to apply the ontology-
based approach introduced above first, and then develop the 
application on the foundation of consistent hierarchy 
confirmed by the approach. Based on the entity view and 
service views, the mission view is established according to 
the task analysis. By using Pellet to compute inconsistent 
concepts in the operational view, we have to spend some 
time to fix the inconsistent problems discovered by Pellet. 
During this time, we can form the consistent semantic 
framework for the current simulation task, which is the 
preparing work to develop the specific simulation application. 
Then a corresponding simulation system is developed 
according to the OWL code generated by Protégé. Under the 
same simulation condition, the result is shown in Table III. 

TABLE III.  SIMULATION RESULTS (METHOD 2) 

Type Average 
coverage 
time  

Coverage 
rate (%) 

Average 
switching 
times 

MEO-ground(A) 8178.1 9.47 10.563 
MEO-LEO1 1616.7 1.87 53.442 
GEO-MEO21 8293.0 9.60 10.418 
GEO-LEO1 2102.8 2.43 41.088 

The difference between these two methods lies in Table 
IV, in which is shown the time we spent in developing the 
simulation application with these methods.  

TABLE IV.  DEVELOPING TIME (IN DAYS) 

Method Developing 
framework 

Consistency 
verification  

Coding Debugging Total 
time

Method 
1 

0 
0 

3 10 13 

Method 
2 

1 
0.5 

1 2 4.5 

VI. DISCUSSION  

From the Table 2 and Table 3, we can conclude that both 
methods can get the similar simulation results: as to the cases 
involve LEO satellite, the average coverage time is relatively 
short, but the switching times is rather high; in contrast, the 
average switching times in the other 2 cases is rather lower. 
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Although the exact data produced by the two systems are not 
just the same, they are both helpful to discover the difference 
among those four simulation cases and to analyze the reason 
for the difference.  

From the results shown in Table 4, it is clear that Method 
2 is superior to the Method 1 in respect of developing 
efficiency. Although 1.5 days is spent in developing the 
ontology-based framework and performing the consistency 
verification in Method 2, we can save 10 days in the period 
of coding and debugging. As to such a simple simulation 
task to analyze the coverage characteristics in satellite 
network, we can save 9.5 days in total, the improvement of 
which is over 200%.  Because of the reusability and 
interoperability of ontology-based framework, the 
improvement will be more significant in face of more 
complex tasks, especially when involving different 
simulation requirements and services. Most of all, we can 
confirm the consistency of the simulation system by 
applying ontology engineering, which is unable to be 
provided by the pure experiments, This is the key point of 
this study. 

Currently, more and more groups are involved in such an 
effort to apply ontology engineering in different field, and it 
shows that communication, interaction, and system building 
really require common shared ontologies. As to the semantic 
requirements of satellite network simulation, it is also 
required to provide consistency verification by applying 
ontology engineering.  The objective of this study is to 
propose a conceptual model and analytical method to set up 
a formal description of satellite network, which can be easily 
used in other simulation tasks to support semantic 

consistency and to promote the developing of simulation 
applications. In order to meet the requirements proposed in 
Part 3, we hope to do more work in the following areas to 
make the approach more applicable, including: 
 Verifying the feasibility and possible advantages of 

such ontology-based method in more complex 
simulation scenarios. 

 Studying how to organize the relationship among 
the entity view, the service view and the mission 
view to set up a more integrated framework. 

 Studying how to distinguish the level and 
granularity of logic description to prevent too much 
complexity. 
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Figure 3.  Class hierarchy 

 
Figure 4.  Properties of classes 
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