
Application of Ontology Engineering in Satellite Network Simulation

Lin Qi
Department of Space and Command

Academy of Equipment
Beijing, China

Linqi_98@163.co

Chen Yong
Department of Space and Command

Academy of Equipment
Beijing, China

chenyong @163.com

Abstract- Existed simulation works are always too dependent
on a kind of particular techniques or tools to perform
horizontal comparison and integration. There is no formal
description for the simulation objects which leads to the lack of
semantic support in the simulation. In order to guarantee the
reusability and interoperability of heterogeneous models and
services in satellite network simulation and provide
verification support, a method based on ontology engineering
is proposed. Based on the concept of simulation verification
with semantic support, the purpose and requirements of
applying ontology engineering in satellite network simulation
are identified. A test is performed as to a specific simulation
task, and the results show that, besides the semantic support,
the former method can provide significant improvement in
efficiency, which is over 200% in comparison with the latter
one. It is concluded that it is quite feasible to apply ontology in
the area of satellite network simulation.

Keywords-component; ontology engineering; satellite
network; simulation; semantic verification

I. INTRODUCTION

Because of the specific attributes of satellite network and
particularity of space environment, research on satellite
network simulation gains more and more attention recently.
Currently, the achievements in the areas of constellation
configuration design, network topology, inter-satellite links
(ISL), and route strategies in satellite network are relatively
abundant [1,2,3], but these works are always heavily dependent
on a kind of particular techniques or tools so that it is
difficult to perform horizontal comparison and integration.
Most of all, there is no formal description for the simulation
objects, which leads to the lack of semantic support in the
simulation. In order to solve these problems, it is required to
apply ontology engineering to provide correctness
verification of simulation, i.e. to prove the consistency of
simulation project itself, and furthermore to guarantee the
reusability and interoperability of heterogeneous models and
services in satellite network simulation.

II. VERIFICATION WITH SEMANTIC SUPPORT

There exists disbelief in simulation verification all the
time, and one of the most important reasons is the lack of
correctness confirmation of simulation itself. Similar to
software testing, simulation is considered as only an
experimental method to prove something is wrong rather

than to prove it is right. Pure simulation lacks semantic
support, and it can only verify a subset in the application
domain. If something wrong is discovered, we can conclude
that the simulation goals or models really have problems.
But even if simulation is performed as expected, there is still
no guarantee on the credibility of simulation procedure itself.
Only when the simulated domain is proven to be consistent
and correct, can simulation provide “real verification”.

Although it is impossible to prove correctness by means
of software testing, several proving methodologies have been
proposed long ago. For example, correctness proving based
on formal semantic introduced by Hoare [4] is to perform
logic deduction and reasoning in view of system semantic,
which can prevent unilateral result. Similarly, as to the lack
of semantic support in simulation, we can also use
description logic and ontology which are based on FOL
(first-order logic) to establish a provable simulation
framework, so as to provide proof for semantic consistency
at higher level. When the premise is guaranteed that
simulation hierarchy is consistent, we can perform qualified
analysis by simulation experiment on lower level to provide
fine-grained verification.

Ontology can provide a bridge to build a sharable
architecture for the problem domain without concept
ambiguity, which is the key to support the semantic
consistency in simulation. In addition, it is necessary to
deduce in descriptive knowledge base according to a set of
specific rules. Ontology and description logic are ideal to
provide such a logic descriptive method. As a result, it is not
only necessary but also feasible to apply ontology
engineering to provide formal verification for simulation
application.

III. CONCEPTS OF ONTOLOGY ENGINEERING

Ontology is an explicit description of a domain, including
concepts, properties and attributes of concepts, constraints on
properties and attributes, and often includes individuals.
With ontology, we can define a common vocabulary and a
shared understanding of a domain [5]. Ontology engineering
means defining concepts in the domain (classes), arranging
the concepts in a hierarchy (subclass-superclass hierarchy),
defining which attributes and properties classes can have and
constraints on their values, and defining individuals and
filling in values. Analysis and evaluation is one of main
research issues in ontology engineering.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2849

The aim to develop ontology is to share common
understanding of the structure of information among people
and among software agents, especially to enable reuse of
domain knowledge and to introduce standards to allow
interoperability. With ontology, it will be easier to change
domain assumptions and re-use domain and operational
knowledge separately.

IV. APPLICATION OF ONTOLOGY ENGINEERING

A. Operational View
By applying ontology engineering, the simulation

framework can set up an operational view for any simulation
task.

Framework Top-
level Description

Purpose
Key Problems

Objects

Entity
View

Service
View

Mission
View

Framework
Application

Architecture
Entity Nodes
Entity Relationship
Core Models

Specific Services
Data Storage
Data Exchange
Data Federation
Core Services

Top-level Mission
Concept
Information Flow
Status Transition
Events/interactions

Consistence
Verification

1

2 3 4

Operational View

Simulation
Knowledge

Base

Simulation

Simulation
Database

Simulation
Model base

Figure 1. Operational view

The operational view is the description of the entities and
services involved in a mission performed in satellite network,
and can be divided into 3 sub-views. In the entity view, the
entities are organized in a layered architecture, and it is also
required to provide description of relationship and
constraints among entity nodes. Based on the entity view, the
service view put focus on the simulation-specific services
and a set of supporting services. Simulation-specific services
are types of services in the areas of constellation
configuration, communication links, route protocols,
topology, network management, and network security in
satellite network, which can be invoked in simulation system.
Supporting services includes data storage, data exchange,
data federation, and core service to provide infrastructure for
simulation system. On the basis of the entity and service
views, the purpose of the mission view is to provide top-
level mission concept, the description of information flow
and events/interactions, and status transition array. After
performing consistency verification by using reasoning
engine, we can really develop a simulation application to
implement simulation analysis.

B. Ontology-development related tools
We use Protégé-3.2 as the ontology-development tool,

which supports a rich knowledge model and is open-source
and freely available [6]. In addition, in order to implement
consistency deduction, a practical OWL-DL reasoner named
Pellet is used as DIG (Description Logic Implementers
Group) engine. According to the visualization requirements,

visualization plug-in (graphviz) is also configured in Protégé.
These tools can be used as follows:

JD K

ant

P elle t D IG server

P ro teg e

g rap hv iz O W L vz1

2

3

4
5

6

7
O W L code

ID E9

S im ulation
fram ew ork

8

S im ulation
app lication

10

Figure 2. Ontology-development related tools

① Install and configure ant after installing JDK;
② Build Pellet with ant;
③ Install Protégé;
④ Install graphviz to provide visual presentation;
⑤Configure the OWLvz tab in Protégé with graphviz;
⑥Configure Pellet as the reasoning engine of Protégé;
⑦ Develop simulation framework in Protégé;
⑧ Provide consistency proving with simulation

framework;
⑨ Map the OWL code generated by simulation

framework to IDE developing environment;
⑩ Develop simulation application.

C. Developing Ontology In Satellite Network
1) Define Classes and the Class Hierarchy

Class is a concept in the domain and is a collection of
elements with similar properties. Classes usually constitute a
taxonomic hierarchy (a subclass-superclass hierarchy) and a
class hierarchy is usually an IS-A hierarchy. In satellite
network simulation, we can establish a class hierarchy
according to the constitution and latitude of satellite entities,
including satellite-network, constellation, single node
(satellite and station), and single component (on-board or
grounded devices) at the top level, which can be divided into
lower levels furthermore (shown in Fig. 3).

2) Disjoint Classes
Classes are disjoint if they cannot have common

instances, and disjoint classes cannot have any common
subclasses either. For example, MEO-Satellite, GEO-
Satellite and LEO-Satellite are disjoint.

3) Define Properties of Classes – Slots
Slots in a class definition describe attributes of instances

of the class and relations to other instances. There are
different types of properties, including “intrinsic” properties
(orbit planes of constellation), “extrinsic” properties (name
of satellite), parts (payload on satellite), and relations among
objects (owner of a on-board device (satellite)). In addition,
it is necessary to define property constraints (facets), which
describe or limit the set of possible values for a slot. For
example, IntraPlaneLinks_LEO is a sub-property of
IntraPlaneLinks property. It is a datatype property, which has
its own datatype, range, and allowed values besides the

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2850

domain constraints (shown in Fig. 4). As to object property,
it is useful to inverse slots. Inverse slot contain redundant
information, but allow acquisition of the information in
either direction, enable additional verification, and allow
presentation of information in both directions. In Fig. 4, it is
shown that IsDeviceof and HasDevice are inverse slots.

4) Create an instance of a class
When we create an instance of a class, the class becomes

a direct type of the instance. Any superclass of the direct
type is a type of the instance. At this stage, we must assign
slot values for the instance frame, and slot values should
conform to the facet constraints. In fact, this work is always
done when we establish the mission view, because only at
that time can we figure out the real slot values corresponding
to the current mission.

The service view and mission view can be established in
the same way. Finally, by using Pellet as reasoning engine,
we can detect the violation of property constraints, cycles in
the class hierarchy, terms that are used but not defined,
interval restrictions that produce empty intervals (min >
max), so as to confirm the consistency of the simulation case.
In addition, classes with a single subclass, classes or slots
with no definitions, slots with no constraints can also spotted.
Fixing these problems is helpful to improve the quality of
simulation application.

V. TEST AND RESULTS

The best test is the application for which the ontology
was designed. So we set up a specific mission view to
describe the simulation analysis of the coverage
characteristics in satellite network, and perform consistency
verification on the description. After getting the confirmed
results, we develop a simulation application to test whether
this ontology-based approach is applicable.

Coverage characteristics are very important for satellite
network to perform well. It is not enough to simulate the
coverage characteristics of a single satellite; coverage
characteristics of the whole constellation or network are also
needed to form a consistent system. In addition, besides
coverage rate, there are many other important criteria
including coverage time, coverage continuity, switching
times, and coverage degree, which have constraints between
each other. As a result, it is suitable to take such a task as an
example to test the feasibility of the approach we proposed.

We want to build a simulation application to analyze the
coverage characteristics in 4 cases: MEO (Medium Earth
Orbit) constellation to ground, MEO constellation to LEO
(low Earth Orbit) satellites, GEO (geostationary orbit)
constellation to MEO satellites, and GEO constellation to
LEO satellites. The main parameters of satellite network to
be simulated are shown in Table I. And station node on the
ground is selected as A(N: 39.906193，E: 116.388039).

TABLE I. CONFIGURATION OF SATELLITE NETWORK

Orbit type GEO MEO LEO
altitude(km) 35786 11946 1000
inclination(°) 0 45 99.6
period(s) 86164.09 24685.75 6307.12
Number of satellites 3 12 4

Number of orbits 1 4 4
Phase factor — 1 —

We developed the simulation in two different ways. The
first method is to develop the application all at once
according to the requirement description based on HLA in
Visual C++ developing environment, which is called Method
1. In this way, we have spent much time on coding and
debugging, especially on modifying the improper
relationship between federate members. Setting simulation
period as 86400s and step as 60s, we can get the simulation
results shown in Table II.

TABLE II. SIMULATION RESULTS (METHOD 1)

Type Average
coverage
time

Coverage
rate (%)

Average
switching
times

MEO-ground(A) 8617.3 9.97 9.537
MEO-LEO1 1237.3 1.43 43.258
GEO-MEO21 8766.1 10.14 11.278
GEO-LEO1 2005.0 2.32 51.944

The other method (Method 2) is to apply the ontology-
based approach introduced above first, and then develop the
application on the foundation of consistent hierarchy
confirmed by the approach. Based on the entity view and
service views, the mission view is established according to
the task analysis. By using Pellet to compute inconsistent
concepts in the operational view, we have to spend some
time to fix the inconsistent problems discovered by Pellet.
During this time, we can form the consistent semantic
framework for the current simulation task, which is the
preparing work to develop the specific simulation application.
Then a corresponding simulation system is developed
according to the OWL code generated by Protégé. Under the
same simulation condition, the result is shown in Table III.

TABLE III. SIMULATION RESULTS (METHOD 2)

Type Average
coverage
time

Coverage
rate (%)

Average
switching
times

MEO-ground(A) 8178.1 9.47 10.563
MEO-LEO1 1616.7 1.87 53.442
GEO-MEO21 8293.0 9.60 10.418
GEO-LEO1 2102.8 2.43 41.088

The difference between these two methods lies in Table
IV, in which is shown the time we spent in developing the
simulation application with these methods.

TABLE IV. DEVELOPING TIME (IN DAYS)

Method Developing
framework

Consistency
verification

Coding Debugging Total
time

Method
1

0
0

3 10 13

Method
2

1
0.5

1 2 4.5

VI. DISCUSSION

From the Table 2 and Table 3, we can conclude that both
methods can get the similar simulation results: as to the cases
involve LEO satellite, the average coverage time is relatively
short, but the switching times is rather high; in contrast, the
average switching times in the other 2 cases is rather lower.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2851

Although the exact data produced by the two systems are not
just the same, they are both helpful to discover the difference
among those four simulation cases and to analyze the reason
for the difference.

From the results shown in Table 4, it is clear that Method
2 is superior to the Method 1 in respect of developing
efficiency. Although 1.5 days is spent in developing the
ontology-based framework and performing the consistency
verification in Method 2, we can save 10 days in the period
of coding and debugging. As to such a simple simulation
task to analyze the coverage characteristics in satellite
network, we can save 9.5 days in total, the improvement of
which is over 200%. Because of the reusability and
interoperability of ontology-based framework, the
improvement will be more significant in face of more
complex tasks, especially when involving different
simulation requirements and services. Most of all, we can
confirm the consistency of the simulation system by
applying ontology engineering, which is unable to be
provided by the pure experiments, This is the key point of
this study.

Currently, more and more groups are involved in such an
effort to apply ontology engineering in different field, and it
shows that communication, interaction, and system building
really require common shared ontologies. As to the semantic
requirements of satellite network simulation, it is also
required to provide consistency verification by applying
ontology engineering. The objective of this study is to
propose a conceptual model and analytical method to set up
a formal description of satellite network, which can be easily
used in other simulation tasks to support semantic

consistency and to promote the developing of simulation
applications. In order to meet the requirements proposed in
Part 3, we hope to do more work in the following areas to
make the approach more applicable, including:
 Verifying the feasibility and possible advantages of

such ontology-based method in more complex
simulation scenarios.

 Studying how to organize the relationship among
the entity view, the service view and the mission
view to set up a more integrated framework.

 Studying how to distinguish the level and
granularity of logic description to prevent too much
complexity.

REFERENCES
[1] Lloyd Wood, George Pavlou, and Barry Evans, “Effects on TCP of

routing strategies in satellite constellations”, IEEE Communications
Magazine, 2001,39(3), pp,172-181.

[2] I.F. Akyildiz, , E. Ekici, and M.D. Bender. MLSR: a novel routing
algorithm for multilayered satellite IP networks, IEEE/ACM
Transactions on Networking, 2002,10(3).pp, 411-424.

[3] E, Frazzoli, G,B, Palmerini, and F, Graziani, “Debris Cloud Evolution:
Mathematical Modeling And Application To Satellite Constellation
Design”, Acta Astronautica, 1996,39(6),pp,439—445.

[4] Hoare, C.A.R., “An Axiomatic Basis for Computer Programming”,
Communications of the ACM, 1969,12(10), pp, 576-583.

[5] Natalya F. Noy and Deborah L. McGuinness (2001) “Ontology
Development 101: A Guide to Creating Your First
Ontology”,http://protege.stanford.edu/publications/ontology_develop
ment/ontology101.html

[6] Matthew Horridge, Holger Knublauch, etc, A Practical Guide To
Building OWL Ontologies Using The Protege, The University Of
Manchester, 2004.4.

T o p - l e v e l c l a s s

l o w e r - l e v e l c l a s s

b o t t o m - l e v e l c l a s s

Figure 3. Class hierarchy

Figure 4. Properties of classes

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

2852

