Some Holey designs and Incomplete designs for the join graph of K_1 and C_4 with a pendent edge

Xiaoshan Liu a
Department of Mathematics & Physics
Shijiazhuang University of Economics
China, Shijiazhuang
liuxiaoshan80617@163.com

Qi Wang b
Graduate School
Hebei University of Economics & Business
China, Shijiazhuang
wangqi80617@163.com

Abstract-A G-design of λK_v is a pair (X,B), where X is the vertex set of K_v and B is a collection of subgraphs of K_v, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exact (at most, at least) λ blocks of B. In this paper, we will discuss some holey designs and incomplete designs for the join graph of K_1 and C_4 with a pendent edge for $\lambda = 1$.

Keywords- G-packing design, G-covering design, Holey G-design

I. INTRODUCTION

A complete multigraph of order v and index λ, denoted by λK_v, is an undirected graph with v vertices, where any two distinct vertices x and y are joined by λ edges (x,y). Let G be a finite simple graph. A G-design $G - GD_\lambda(v)$ (G-packing design $G - PD_\lambda(v)$, G-covering design $G - CD_\lambda(v)$) of λK_v is a pair (X,B), where X is the vertex set of K_v and B is a collection of subgraphs of K_v, called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exact (at most, at least) λ blocks of B. A packing (covering) design is said to be maximum (minimum) if no other such packing (covering) design of the same order has more (fewer) blocks. The number of blocks in a maximum packing design (minimum covering design), denoted by $p(v,G,\lambda) (c(v,G,\lambda))$, is called the packing number (covering number). Obviously,

$$p(v,G,\lambda) \leq U(v,G,\lambda) = \left\lfloor \frac{\lambda v(v-1)}{2E(G)} \right\rfloor$$

$$\leq \left\lfloor \frac{\lambda v(v-1)}{2E(G)} \right\rfloor = V(v,G,\lambda) \leq c(v,G,\lambda),$$

where $\lfloor x \rfloor$ ($\lceil x \rceil$) denotes the greatest (least) integer y such that $y \leq x$ ($y \geq x$). A $G - PD_\lambda(v)$ ($G - CD_\lambda(v)$) is called optimal and is denoted by $G - OPD_\lambda(v)$ ($G - OCD_\lambda(v)$) if the left (right) equality in above inequality holds. Obviously, there exists a $G - GD_\lambda(v)$ if and only if $p(v,G,\lambda) = c(v,G,\lambda)$. So a $G - GD_\lambda(v)$ can be regarded as a $G - OPD_\lambda(v)$ or a $G - OCD_\lambda(v)$. The leave $L_\lambda(P)$ of a packing design $G - PD_\lambda(v) = (v,P)$ is a subgraph of λK_v and its edges are the supplement of P in λK_v. When P is maximum, $|L_\lambda(P)|$ is called leave-edges number and is denoted by $l_\lambda(v)$. Similarly, the repeat-edge graph $R_\lambda(C)$ of a covering design $G - CD_\lambda(v) = (v,C)$ is a subgraph of λK_v and its edges are the supplement of λK_v in C. When C is minimum, $|R_\lambda(C)|$ is called repeat-edges number and is denoted by $r_\lambda(v)$. Generally, the symbols $L_\lambda(P)$ and $l_\lambda(v)$ can be denoted by L_λ and l_λ briefly, while $R_\lambda(P)$ and $r_\lambda(v)$ can be denoted by R_λ and r_λ correspondingly.

Let $X = \bigcup_{i=1}^t X_i$ be the vertex set of K_{n_1,n_2,\cdots,n_t}, a complete multipartite graph consisting of t parts with size n_1,n_2,\cdots,n_t respectively, where the sets X_i...
Theorem 3.2 There exists $G - HD(18^{t+2})$ for $t \geq 1$.

Proof. Give the direct construction of $G - HD(9^4)$ on vertex set $Z_9 \times Z_4$ and blocks are:

$\{0, 0, 0, 2, 2, 2, 1, 0, 0\}, \{0, 3, 1, 0, 2, 6, 2, 3, 1, 8, 2, 4\}, \{0, 3, 2, 3, 3, 5, 4, 3, 2\}, \{0, 1, 7, 2, 1, 2, 0, 3, 7\}, \{0, 5, 3, 1, 2, 6, 3, 7, 2\}, \{4, 3\}, \{0, 0, 0, 4, 1, 1, 6, 1, 7\}$ mod (9, −).

IV. CONSTRUCTIONS FOR ID

Theorem 4.1 There exists $G - ID(9 + \sigma, \sigma)$ for $\sigma = 2, 3, \cdots, 7, 8, 12$.

Proof. There are $\sigma + 4$ blocks in each $G - ID(9 + \sigma, \sigma)$.

$\sigma = 2 : Z_9 \times Z_3 \cup \{x_1, x_2\} \mod (3, -) \cup \{0, 1, 0, 2, 0, 1, 2, 1\}$.

$\sigma = 3 : Z_9 \cup \{x_1, x_2, x_3\}$.

$\sigma = 4 : Z_9 \cup \{x_1, x_2, x_3\}$.

$\sigma = 5 : Z_9 \times Z_3 \cup \{x_1, x_2, \cdots, x_9\}$.

$\sigma = 6 : Z_9 \cup \{x_1, x_2, \cdots, x_9\}$.

Figure 1. Graph G
\((6, x_1, 3, x_2, 4, 8), (5, x_1, 7, x_2, 0, 8), (1, x_1, 8, x_2, 2, 5), (5, x_3, 6, x_4, 8, 2), (0, x_1, 1, x_2, 2, 4), (2, x_1, 7, x_2, 3, 4), (4, x_1, 0, x_4, 1, 5), (8, x_3, 7, x_6, 6, 2), (5, x_4, 3, x_6, 4, 7), (7, 0, 6, 1, 3, 8) \)

\(\mathcal{G} = 7 : Z_9 \cup \{ x_1, x_2, \ldots, x_7 \} \)

\((0, x_1, 6, x_2, 1, 5), (4, x_1, 5, x_2, 7, 6), (8, x_1, 3, x_2, 2, 6), (2, x_3, 3, x_4, 1, 6), (5, x_5, x_6, 0, 8), (4, x_2, x_3, 3, 5), (7, x_3, 5, x_4, 0, 2), (x_7, 1, 4, 0, 3, 6), (2, x_3, 8, x_4, 6, x_7), (1, x_5, 7, x_6, 8, x_7), (x_7, 2, 5, 8, 7, 3) \)

\(\mathcal{G} = 8 : Z_3 \times Z_3 \cup \{ x_1, x_2, \ldots, x_9 \} \)

\((0, x_1, 0, x_2, 0, 1, 10), (1, x_1, 0, x_2, 1, 4, 2), (1, x_2, 0, x_3, 0, 1, 1), (2, x_2, 0, x_4, 0, 1, 1) \mod (3, -) \).

\(\mathcal{G} = 12 : Z_6 \cup \{ x_1, x_2, \ldots, x_3 \} \)

\((6, x_3, 2, x_4, 4, 3), (x_7, x_1, 0, x_6, 4, x_1), (0, x_1, x_1, 1, x_2, 2, 8), (0, x_1, x_4, 2, x_3, 3), (1, x_1, 2, x_2, 5, x_11), (7, x_1, x_8, 2, x_6, 6, x_1), (x_5, x_2, 6, x_3, 3, x_1), (1, x_7, x_6, x_4, 4, x_1), (2, x_3, 3, x_4, 7, x_11), (5, x_3, 0, x_4, 8, x_11), (x_3, x_7, 1, x_8, 7, x_12), (7, x_9, 3, x_9, 1, x_{10}, 5, 4), (6, x_9, 0, x_5, x_12), (4, x_7, x_2, x_8, x_12), (8, x_9, 0, x_{10}, 3, 6) \)

Theorem 4.2: There exists \(G - \text{ID}(18 + \mathcal{G}, \mathcal{G}) \) for \(\mathcal{G} = 2, 4, 5, 6, 7, 8, 9 \).

Proof. There are 2\(\mathcal{G} + 17 \) blocks in each \(G - \text{ID}(18 + \mathcal{G}, \mathcal{G}) \).

\(\mathcal{G} = 2 : Z_3 \times Z_6 \cup \{ x_1, x_2 \} \)

\((0, x_1, 0, x_2, 0, 1, 1), (0, x_1, 1, x_2, 1, 0), (0, x_1, 1, x_2, 0, 0) \mod (3, -) \).

\(\mathcal{G} = 4 : Z_6 \cup \{ x_1, x_2, x_3 \} \)

\((0, x_1, 0, x_2, 0, 0), (0, x_1, 1, x_2, 1, 0), (0, x_1, 0, x_2, 1, 0) \mod (3, -) \).

\(\mathcal{G} = 8 : Z_3 \times Z_6 \cup \{ x_1, x_2, \ldots, x_8 \} \)

\((0, x_1, 0, x_2, 1, 1, 0), (0, x_1, 0, x_2, 1, 0, 1), (0, x_1, 0, x_2, 1, 0) \mod (3, -) \).

V. Acknowledgment

"This author was supported by the funds from Education Department Foundation of Hebei Province under fund number Z2012057 and Foundation of Shijiazhuang University of Economics under fund number ZK201103. Tel.: (+86)13463955288 E-mail address: luxiaoshan80617@163.com."
This author was supported by the funds from Nature Science Foundation of Hebei Province under fund number A2011207003 and Outstanding Youth Fund Project of Scientific Research in Colleges and Universities of Hebei Department of Education under fund number Y2011115.

Tel: (+86)13463955388; E-mail address: stwangqi@heuet.edu.cn

REFERENCES

