THE CARRYING WATER DESIGN OF MOBILE ROBOT BASED ON MC9S12XS128

Kai Zong
College of Physics and Electronic Information Engineering
Wenzhou University
Wenzhou, China
942584751@qq.com

Yurong Chen
College of Physics and Electronic Information Engineering
Wenzhou University
Wenzhou, China
1535415765@qq.com

Feng Wang
College of Physics and Electronic Information Engineering, Wenzhou University,
Wenzhou, China
wang_fengwf@163.com

Abstract—With the development of modern electronic technology, the intelligent robots are researched and developed in many areas. In this paper, the hardware circuit and system software are designed reasonably to achieve the robot carry water from origin to destination. The intelligent robot can carry water along the black guide lines (any shape) forward and backward. A MC9S12XS128 MCU is adopted as the main controller, which is developed by Freescale Semiconductor Company. The tracking, LCD display, water level detection, water storage, water transport and pumping are designed detailedly in the smart water transport system.

Keywords-MC9S12XS128; automatically carrying water; motor drive; tracking; water level detection

I. DESIGN CONTENT AND REQUIREMENTS

This product is a fully automatic water transport trolley, to carry water from the point of origin to destination, load and unload water automatically. As is shown in Figure 1, the entire process of carrying water is done automatically without any human intervention.

At first, a smart car stops in the initial segment. The car switch is opened to start the car. The car goes forward along the black line and stops at the end of the black line. The car gets water automatically until the water reaches the water lever in the container. Then the car gets back to the starting point along the same route and unloads water automatically. It goes full circle.

II. DESIGN AND PROOF

Total block diagram is shown in Figure 2. When a start command is given, the smart car starts from Area C to Area A along the black guide lines. When it gets to Area A, the smart car emits the 38 KHz frequency infrared rays to the water tower. When the infrared receiver tube on water tower receives the infrared rays, the controller on water tower generates a low level to open the mini-pumps, which injects water into the container. After the car gets water from Zone A, it returns to the Area C along the same path to achieve the water transport.

A. Display module

Option 1: The original display device of LED digital tube is usually selected to obtain the information, which is simple and advantageous to operate. However, the amount of information displayed is too large and there are so many digital tubes in requirement and this way is out of date. So the option is given up.

Option 2: The LCD display module mainly includes the start-up screen, temperature display, date and time display, as well as the quantity of water and water transport time display. This display technology is more advanced, easier to use and better to display. So good this program that it is normally used.

B. The system control unit

Option 1: The 51 MCU has a long history with high integration, processing capabilities, good reliability. It’s inexpensive and easy to use. However, in view of the weak,
the functionality of the chip does not have the PWM interface which is commanded in the module of motor, so it requires more actual circuit hardware interface to achieve this function.

Option 2: The STM32 MCU is a 32-bit ARM CORTEX-M3 core, ST production, replacing part of the main IPC 16 and the low-end 32 microcontroller. Stm32’s storage capacity is much higher than the 51 MCU. The Enhanced MCU is a high-performance, low-cost and low-power. In view of task time and the degree of mastery of the chip, this option is given up.

Option 3: The Freescale Semiconductor production MC9S12XS128 chip is adopted as the core control unit. High-performance MC9S12XS128 is just a S12X family member. The device includes a large number of on-chip memory and external I/O port. MC9S12XS128 is a 16-bit devices, 16-bit central processing unit (CPU12X), I28KB program Flash (P-Flash), 8KB data Flash (D-Flash) memory chip. Also it includes two asynchronous serial communications interface (SCI), a serial peripheral interface (SPI) and an 8-channel input capture / output compare (IC / OC) timer module (TIM), 16-channel 12-bit A/D converter (ADC) and an 8-channel pulse width modulation module (PWM). Moreover, the chip also has 91 digital I / O port, some of the digital I / O port have interrupt and wake-up functions. Working at the 3.3 ~ 5.5V in a memory protection unit is used to prevent system errors in the software implementation process.

In view of the experience of MC9S12XS128 chip drives car, as well as the excellent performance of the chip itself and consideration of operation and economic, option 3 is selected.

C. The motor drive module

Option 1: The D/A converter is adopted to changes the voltage applied to the motor. The D/A converter transforms discrete binary digital signals into the analog voltage.

Option 2: In process control, the PID controller has been used widely. The PID algorithm has also been the most popular way in the field of control algorithm so far. It is a feedback control process.

Option 3: The motor speed is controlled by the PWM wave. The different duty cycle pulses are output to the motor to regulate the motor speed.

On the one hand, the MC9S12XS128 MCU don’t contains D/A converter, so it’s not able to complete the D/A conversion. On the other hand, it becomes a problem that how to regulate the parameters PID. The adjustment is a complex process. So the option 3 is selected, namely the PWM option is selected.

D. Tracking module

The tracking module uses the infrared detection method to track. The infrared rays have the different reflectance properties on the surface of the different color of the object. According to whether receiving the reflected infrared light, the position of the black line is determined. The homemade infrared module are selected in this design. The circuit is shown in Figure 3.

The software flow chart is shown in Figure 4.

III. SYSTEM SOFTWARE DESIGN

The system is shown in Figure 5. The test results are described below:

(1) A smart car starts from Area C. When it arrives at A zone, it gets water from the water tower. After it gets water, it returns along the same path. Then the car finishes unloading water at area C. The whole process achieves the functions of water transport.

(2) When the smart car gets to Area A, the information exchange between the infrared receiver on the water tower and transmitter on the small car makes the valve of water tower opened to achieve automatic water supply function.

(3) When the car reaches the destination C by tracking, it unloads water through the water pump.
(4) The smart car transports water with an average water supply 400ml in each 8S. The display on LCD is shown in Figure 6. The transported water test table is shown in Table 1.

(5) If a round-trip order is issued, the round-trip carrying water can be realized automatically.

V. CONCLUSIONS

The paper designs the hardware circuit and software system of the intelligent transport water robot based on MC9S12XS128. The whole system uses the modular design, so that the system has good upgradability and scalability. There are a lot of innovations in the design. For example, in the tracking part, the A/D module isn’t used to transform the analog signal which is received by the infrared receiving tube to the digital signal. The resources of MCU are saved because we adopt the infrared detection method. The same method is adopted in the obstacle avoidance part. These methods are adopted so that the design of intelligent transport water robot has advantages in stability, real-time, and cost.

To solve the practical problems in production, the design of the performance is introduced in the robot product development. The project may be applied to a hospital, nursing home, etc. to save manpower, improve the living standards.

ACKNOWLEDGMENT

This work is supported by the opening laboratory project of Wenzhou University--- The Design and Development of Carrying Water Intelligent Robot, Wenzhou, China, with the Project No. 12SK34A. This work is supported in part by the education reform research project of Wenzhou University--- Embedded System Entrepreneurial Practice, Wenzhou, China, with the Project No. 2010KC05. This work is supported by the students' scientific research subject of Wenzhou University--- The Design of Carrying Water Robot, Wenzhou, China. The authors thank the anonymous reviewers for their helpful comments.

REFERENCES