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Abstract—The electronic power system can be viewed as a 
system composed of a set of concurrently interacting 
subsystems to generate, transmit, and distribute electric power. 
The complex interaction among sub-systems makes the design 
of electronic power system complicated. Furthermore, in order 
to guarantee the safe generation and distribution of electronic 
power, the fault tolerant mechanisms are incorporated in the 
system design to satisfy high reliability requirements. As a 
result, the incorporation makes the design of such system 
more complicated. We propose a dependable electronic power 
system architecture, which can provide a generic framework 
to guide the development of electronic power system to ease 
the development complexity. In order to provide common 
idioms and patterns to the system *designers, we formally 
model the electronic power system architecture by using the 
PVS formal language. Based on the PVS model of this system 
architecture, we formally verify the fault tolerant properties of 
the system architecture by using the PVS theorem prover, 
which can guarantee that the system architecture can satisfy 
high reliability requirements.  

Keywords- System Architecture; PVS System; Fault 
Tolerance; Formal Modeling; Formal Verification. 

I.  INTRODUCTION  

Electronic power system is a highly dependable 
distributed system, where substations, power companies, 
control areas, and interconnection cooperate with each other 
to generate, transmit, and distribute electric power safely. 
The functional and nonfunctional requirements make the 
development of such distributed systems complicated. 
Software architecture is identified as a critical design 
methodology, which can ease the complexity of the 
development of distributed systems [1], [2]. We propose an 
Electronic Power System Architecture (EPSA) to guide the 
development of such systems, which involves not only 
different kinds of concurrency but also fault tolerant 
mechanisms [3], [4].  

Formal methods [5], [6], [7], [8] provide precise 
specification and rigorous verification for architecture 
design in virtue of well-defined semantics. Prototype 
Verification System (PVS) [9] is a powerful theorem prover 
with its highly integrated environment for writing formal 
specifications and developing rigorous verification. PVS, 
built on over years of experience at SRI in developing and 
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using tools to support formal methods, has been 
successfully applied to large and complex application in 
both academic and industrial areas. PVS modeling language 
expands higher-order logic with a sophisticated type system. 
The interactive theorem prover of PVS offers powerful 
automatic reasoning techniques at low levels such as 
arithmetic of real numbers and sets. Users can directly 
control proof development at a high level by defining their 
own proof strategies which combine primitive PVS proof 
commands. These strengths of PVS are useful to verify the 
fault tolerant properties of electronic power system 
architecture.  

In order to provide precise idioms and patterns to the 
system designers, we formally model EPSA using PVS 
specification language. Based on the formal model of EPSA, 
we utilize the theorem proving method of PVS to verify the 
fault tolerant properties of EPSA with high degree of 
automation.  

The remainder of this paper is organized as follows. 
Section 2 describes the construction of electronic power 
system. Section 3 explains the architecture styles of EPSA. 
Section 4 illustrates the formal model of EPSA using PVS 
specification language. Section 5 presents the verification of 
fault tolerant properties of EPSA. Section 6 concludes the 
paper.   

II. ELECTRONIC POWER SYSTEM AND PVS 

A. Electronic Power System 

Electronic power system is composed of substations, 
generating station, power companies, control areas, and 
interconnection. As shown in Fig. 1, the substation and 
generating station report the demand and supply to their 
parent power company respectively. The power company 
accepts the data, calculates and reports the surplus or deficit 
to its parent control area. The control area accepts power 
balances, calculates and reports the balance to its parent 
control region. The control region accepts power balance, 
calculates and reports the balance to its parent inter-
connection. The interconnection accepts the power balances, 
calculates, swaps power with other interconnections, and 
redistributes power interchanges amongst its control regions. 

The hierarchical relationship among substation, 
generating station, power company, and control area can be 
applied to the hierarchical relationship among control area, 
control region, and interconnection. Therefore, we focus 
our development of EPS on the concurrency among 
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substation, generation station, power company and control 
area. 

 
Figure 1.  Construction of Electronic Power System 

B. Prototype Verification System (PVS) 

PVS is an integrated environment for formal 
specification and verification. In order to support 
modularity and reuse, specifications in PVS are logically 
organized into parameterized theories, which can be linked 
by import and export lists. We use a queue example to 
explain how to build a theory. The queue is defined as a 
THEORY associated with the generic parameter Item. 
Meanwhile, the TYPE+ indicates that the type of the Item 
is uninterpreted and nonempty. Function Join defines 
receiving a new element item. Function Leave defines 
leaving an old element item.  

Queue [Item: TYPE+]: THEORY  
BEGIN 
items: 
TYPE=[#size: nat, elements: ARRAY[{i|i<size} -> Item]#]
itms: VAR items 
nonemptyqueue?(itms): bool=(size(itms)>0) 
nitms: VAR (nonemptyqueue?) 
join(item,itms):items=(#size:=size(itms)+1, 

elements:=elements(itms) WITH [(size(itms)):=item]#) 
leave(item, nitms): items=(#size:=size(nitms)-1, elements:=
(LAMBDA(j:{i|i<size(nitms)-1}): elements(nitms)(j+1))#) 
END Queue 
The theorem prover of PVS maintains a proof tree, and 

the objective is to construct a complete proof tree in which 
all leaves are trivially true. Each node of a proof tree is a 
proof goal, which is a sequent consisting of a sequence of 
formulas as antecedents and a sequence of formulas as 
consequents. As an example shown in Fig. 2, the antecedent 
is composed of two formula A1 and A2, and the consequent 
is composed of two formulas B1 and B2.  

 
Figure 2.  PVS Proof Tree Node 

The intuitive interpretation of a proof goal is that the 

conjunction of the antecedents implies the disjunction of the 
consequents. Users can guide the PVS theorem prover by 
entering PVS proof commands which can be used to 
introduce lemmas, expand definitions, apply decision 
procedures, eliminate quantifiers, and so on. 

III. DEPENDABLE EPSA 

 
Figure 3.  Dependable Electronic Power System Architecture 

EPSA is proposed to guide the development of 
electronic power system with high reliability requirements. 
As shown in Fig.3, EPSA is composed of distributed 
components:Substation, GeneratingStation, PowerCompany, 
and  Control-Area; share resources: PCDB, and CADB; 
fault tolerant component: CC; and connectors: SPC, PCS, 
PCG, GPC, PCA, and CAP.  

The distributed component encapsulates its independent 
data representation and their associated primitive operations. 
Then several distributed components can execute 
concurrently and corporate with each other to cater for the 
same goal. The share resource is shared by all the 
distributed components. The connector connects the in_port 
of one distributed component and the out_port of another 
distributed component.  

EPSA integrates fault tolerant techniques with 
functional aspects at the architecture level to satisfy high 
reliability requirements. Once a local exception is raised in 
one distributed component, the component can call the 
corresponding exception handler in its own exception 
context to cope with the exception. If this exception cannot 
be handled successfully, the component should signal a 
global exception and transfer it to the fault tolerant 
component. When multiple global exceptions are raised 
concurrently in specific distributed components, these 
global exceptions are passed to the fault tolerant component. 
The fault tolerant component resolves the received global 
exceptions into a universal exception and broadcasts the 
universal exception to related components and shared 
resources within a network. The informed components can 
deal with the exceptions based on the integrated exception 
handling mechanisms. 

IV. FORMAL MODEL OF EPSA USING PVS  

The formal model of EPSA can provide precise idioms 
and patterns to the system developers. The distributed 
components, shared resources, connectors, and fault tolerant 
components are all formally specified using PVS 
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specification language. We take the fault tolerant component 
CC, and distributed component Substation as a snapshot to 
illustrate the formal model of EPSA.  

A. Formal Model of Fault Tolerant Component 

The CC theory describes how the fault tolerant 
component in EPSA implements the coordinated error 
recovery mechanism when a global exception is raised in an 
Object or multiple global exceptions are raised concurrently 
in different Objects. This CC theory imports the generic-
type theory and the parameterized theory queue. Note that 
theory queue is instantiated with type OBSTATE. The 
OBSTATE denotes the state of distributed component, 
either be normal, a local exception, a global exception, or 
fail. 

CC: THEORY 
BEGIN 
IMPORTING GenericType, Queue[ EXCEPTION ] 
except_graph: [items[EXCEPTION] -> EXCEPTION] 
exception: EXCEPTION 
CC: TYPE = [#exceptions: items [EXCEPTION], 

uni_exception: EXCEPTION # ] 
cc: VAR CC 
emptycc: CC=(#exceptions:=empty, uni_exception:=e#) 
ExceptRec(cc): CC=(#exceptions:=join (exception, 

exceptions(cc)), uni_exception:=exception#) 
ExceptGraph(cc): CC= 
 IF exceptions(ExceptRec(cc)) /=empty   

THEN  (#exceptions:=empty, uni_exception:= 
except_graph(exceptions(ExceptRec(cc)))# ) 

ELSE emptycc 
ENDIF 
In the CC theory, the function except_graph is declared 

to model how to derive a global exception from a set of 
global exception by using specific exception graph 
methodology. Function ExceptRec represents that the fault 
tolerant Component receives exception from the distributed 
components. Function ExceptGraph specifies that the fault 
tolerant component uses the function except_graph to set 
the value of the uni_exception when receiving one or more 
than one global exception. 

B. Formal Model of Distributed Cmponent 

The distributed component Substation sends the used 
and required electronic power data to its parent power 
company. When exceptions raised, the Substation can 
handle these exceptions.  

Substation[SRSTATE: TYPE+]: THEORY 
BEGIN 

IMPORTING CC 
n_states, excepts: setof [ SRSTATE ] 
tsin_ports, tsout_ports: setof [ PORT ] 
dc_msg: [ PORT -> MSG ] 
senddata: [ [ SRSTATE, [ PORT -> AMSG ]] -> 

[SRSTATE ] ] 
except_context: [EXCEPTION -> EH] 
except_handle: [EH -> SRSTATE] 
Station: TYPE = [# inter_state: SRSTATE, checkpoint: 

SRSTATE, ue_rec: SIG # ] 
st : VAR Station 

SendData (st):Station= IF member(inter_state (st),n_states)  
THEN (#inter_state:=PROJ_1(senddata (inter_state (st), 
(LAMBDA p: dc_msg (p)))), checkpoint:=inter_state(st),   
ue_rec:=0 #) 
ExceptPropagate(st):SRSTATE=IFmember(inter_state(st),
excepts) AND ue_rec(st)=0  THEN   inter_state(st) 
ccp: VAR CC 
UniExceptReceive (st, ccp): Sensor=IF uni_exception= 
except_graph(exceptions(ExceptRec(ccp))) THEN 
(#inter_state: =uni_exception, checkpoint:=checkpoint(st), 
ue_rec:=1 #) 
UniExceptHandle (st): Station= 
IF member(inter_state(st), excepts) AND ue_rec(st)=1 
THEN (IF member(except_handle (except_context 
(inter_state(st))), n_states) THEN  
(#inter_state:= except_handle (except_context 
(inter_state(st))), checkpoint: = inter_state(st), ue_rec:=0 #) 
ELSIF 
except_handle(except_context(inter_state(st)))=Fail  
THEN (#inter_state:=Fail, checkpoint:=inter_state(st), 
ue_rec:=0 #) 

END Subsation 
In the Substation theory, the function SendData sends 

the electronic power data to the power company via 
connectors. When the Substation raises a global exception, 
the function ExceptPropagate is used to propagate the 
raised exception to the fault tolerant component. The 
function UniExceptReceive specifies when the distributed 
component receives a universal exception (uni_exception) 
from the fault tolerant component, the state of Substation 
(inter state is updated to uni_exception and signal ue_rec is 
updated to 1). Function UniExceptHandle changes the 
states of four elements in the variable st according to the 
result of exception handling with the universal exception. If 
the Substation can successfully deal with the universal 
exception by using specific exception handler, denoted as 
checking whether the execution result is one of stable states 
(n_states), the inter state of st would be set as a stable state, 
otherwise the inter state would be a Fail state. 

V. VERIFICATION OF EPSA USING PVS 

Since EPSA is used to guide the development of 
dependable electronic power system, it is important and 
necessary to rigorously analyze the fault tolerant properties 
of proposed EPSA. In this section, with the help of powerful 
theorem proving of PVS, we can mechanically verify that 
EPSA can satisfy the fault tolerant properties. The 
verification about one significant fault tolerant property is 
presented here to demonstrate EPSA can satisfy the high 
reliability requirements. 

A. A Fault Tolerant Property  

When the Shared Resource PCDB is attacked, a 
distributed component (e.g. PowerCompany) raises a global 
exception PCDBAttacked, then the other distributed 
components (e.g. Substation) should be informed about this 
exception and deal with it. This property is firstly input to 
the theorem prover of PVS, which is represented as the 
consequent of a sequent, as shown below. 
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pcdb_ pred1 : 
|------- 
{1} (EXISTS (pc: PowerCompany): member (inter_state (sr),  
excepts) AND ue_rec(sr) = 0)  IMPLIES  

(FORALL (ss: Substation), (ccp: CC): 
inter_state (UniExceptReceive(dc, ccp)) = except_graph 

(exceptions(ExceptRec(ccp)))) 
Rule?: (flatten) 
tsft_ pred1 : 
{-1} (EXISTS (pc: PowerCompany): member 
(inter_state(sr),excepts)  AND ue_rec(sr) = 0) 
|------- 
{1} (FORALL (ss: Substation), (ccp: CC): 

inter_state(UniExceptReceive(obj, ccp)) = except_graph 
(exceptions(ExceptRec(ccp)))) 

Rule?: 
During a proof, we enter PVS proof commands after 

Rule?, which is prompted by the PVS prover so as to 
interactively verify the property. For example, proof 
command flatten converts the consequent, namely, pred1 ft 
into a sequent, by eliminating the disjunctive connectives 
(denoted by IMPLIES here). 

B. Verification of Fault Tolerant Property 

The PVS proof commands after each Rule? constitute 
the proof script for the property verification. As shown 
below, the proof script of property pcdb_pred1 starts with 
proof command flatten, followed by skolem! which replaces 
the existentially quantified variable obj in the antecedent (as 
prefixed by {-1}) with an constant pc!1. 

(flatten)(skolem!) 
(lemma "Propagate")(assert)(skolem!)(instantiate –1 ("pc!1"))
(assert)(prop)(hide -2)(hide -2) 
(lemma "Propagate")(assert)(skolem!)(instantiate -1("coc!1"))
(assert)(prop)(hide -3)(hide -3) 
(lemma "ExceptPropagate")(instantiate -1 ("pc!1")) 
(replace -1 (-1 -3) rl)(hide -1) 
(lemma "NonEmpty")(instantiate -1 ("ccp!1" "pc!1"))  
(lemma "CCReceive")(instantiate -1 ("ccp!1"))(assert) 
(lemma "ExceptGraph1")(instantiate -1 ("ccp!1" "ss!1")) 
(replace -1 (-1 -2) rl)(hide -1) 
(lemma "UniExcept")(instantiate -1 ("ccp!1" "dc!1"))(prop) 
(lemma "ExceptGraph1")(instantiate -1 ("ccp!1" "crr!1")) 
(replace -1 (-1 -2) rl)(hide -1) 
(lemma "UniExcept")(instantiate -1 ("ccp!1" "crr!1"))(prop) 

Followed skolem!, there are several user defined 
lemmas which have been proved to be true. These lemmas 
can induce the property verification until the verification 
result is true. The strategy of the proof is that since the 
condition of property pcdb_pred1 is that the state of 
PowerCompany 1) one of the global exceptions, and 2) has 
not received a universal exception from the fault tolerant 
component, the PowerCompany should send such exception 
to the fault tolerant component. Furthermore, the fault 
tolerant component needs to receive the raised exception. 
When receiving an exception, the fault tolerant component 
should put such exception into an exception list(exceptions) 
by using function ExceptRec defined in the coordinating 
theory, Lemma NonEmpty implies that the exception list of 
the fault tolerant component is not empty, denoted as 

exceptions(ExceptRec(cc))/=empty. When the exception 
list is not empty, Lemma CCReceive is applied to induce 
the universal exception(uni_exception) which covers all 
received exceptions by using function except_graph, where 
uni_exception =except _graph(exceptions(ExceptRec(cc))). 
After obtaining the universal exception, the fault tolerant 
component should send it to the distributed component 
Substation. Lemma ExceptGraph1 indicates that the 
Substation receives the universal exception by using the 
function UniExceptReceive. By using lemma CCReceive, 
we can get that, inter_state(UniExceptReceive(obj, ccp)) = 
except_graph(exceptions(ExceptRec(cc))),which is the de-
duction result of pcdb_pred1. By running the above proof 
script, the PVS theorem prover can verify the pcdb_pred1 
property automatically.  

Other fault tolerant properties, such as CADB is 
attacked, or both PCDA and CADB are attacked, can be 
verified using the theorem prover of PVS.  

VI. CONCLUSION 

In this paper, we propose an Electronic Power System 
Architecture (EPSA) to provide a framework to guide the 
development of dependable electronic power systems. The 
formal model of EPSA is presented to provide precise 
idioms and patterns to the system designers. With the help of 
powerful theorem prover of PVS, the fault tolerant 
properties of EPSA are verified with high degree of 
automation, which can demonstrate the proposed EPSA can 
satisfy high reliability requirements. 
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