

Verification of Dependable Architecture based on Prototype Verification System

Ling Yuan
School of Computer Science

Huazhong University of Science and
Technology

Wuhan, China
cherryyuanling@gmail.com

Ping Fan*
School of Computer Science

Hubei University of science and
technology

Hubei, China
fanping1028@126.com

Abstract—The electronic power system can be viewed as a
system composed of a set of concurrently interacting
subsystems to generate, transmit, and distribute electric power.
The complex interaction among sub-systems makes the design
of electronic power system complicated. Furthermore, in order
to guarantee the safe generation and distribution of electronic
power, the fault tolerant mechanisms are incorporated in the
system design to satisfy high reliability requirements. As a
result, the incorporation makes the design of such system
more complicated. We propose a dependable electronic power
system architecture, which can provide a generic framework
to guide the development of electronic power system to ease
the development complexity. In order to provide common
idioms and patterns to the system *designers, we formally
model the electronic power system architecture by using the
PVS formal language. Based on the PVS model of this system
architecture, we formally verify the fault tolerant properties of
the system architecture by using the PVS theorem prover,
which can guarantee that the system architecture can satisfy
high reliability requirements.

Keywords- System Architecture; PVS System; Fault
Tolerance; Formal Modeling; Formal Verification.

I. INTRODUCTION

Electronic power system is a highly dependable
distributed system, where substations, power companies,
control areas, and interconnection cooperate with each other
to generate, transmit, and distribute electric power safely.
The functional and nonfunctional requirements make the
development of such distributed systems complicated.
Software architecture is identified as a critical design
methodology, which can ease the complexity of the
development of distributed systems [1], [2]. We propose an
Electronic Power System Architecture (EPSA) to guide the
development of such systems, which involves not only
different kinds of concurrency but also fault tolerant
mechanisms [3], [4].

Formal methods [5], [6], [7], [8] provide precise
specification and rigorous verification for architecture
design in virtue of well-defined semantics. Prototype
Verification System (PVS) [9] is a powerful theorem prover
with its highly integrated environment for writing formal
specifications and developing rigorous verification. PVS,
built on over years of experience at SRI in developing and

*
 corresponding to: Ping Fan, School of Computer Science, Hubei

University of science and technology, fanping1028@126.com

using tools to support formal methods, has been
successfully applied to large and complex application in
both academic and industrial areas. PVS modeling language
expands higher-order logic with a sophisticated type system.
The interactive theorem prover of PVS offers powerful
automatic reasoning techniques at low levels such as
arithmetic of real numbers and sets. Users can directly
control proof development at a high level by defining their
own proof strategies which combine primitive PVS proof
commands. These strengths of PVS are useful to verify the
fault tolerant properties of electronic power system
architecture.

In order to provide precise idioms and patterns to the
system designers, we formally model EPSA using PVS
specification language. Based on the formal model of EPSA,
we utilize the theorem proving method of PVS to verify the
fault tolerant properties of EPSA with high degree of
automation.

The remainder of this paper is organized as follows.
Section 2 describes the construction of electronic power
system. Section 3 explains the architecture styles of EPSA.
Section 4 illustrates the formal model of EPSA using PVS
specification language. Section 5 presents the verification of
fault tolerant properties of EPSA. Section 6 concludes the
paper.

II. ELECTRONIC POWER SYSTEM AND PVS

A. Electronic Power System

Electronic power system is composed of substations,
generating station, power companies, control areas, and
interconnection. As shown in Fig. 1, the substation and
generating station report the demand and supply to their
parent power company respectively. The power company
accepts the data, calculates and reports the surplus or deficit
to its parent control area. The control area accepts power
balances, calculates and reports the balance to its parent
control region. The control region accepts power balance,
calculates and reports the balance to its parent inter-
connection. The interconnection accepts the power balances,
calculates, swaps power with other interconnections, and
redistributes power interchanges amongst its control regions.

The hierarchical relationship among substation,
generating station, power company, and control area can be
applied to the hierarchical relationship among control area,
control region, and interconnection. Therefore, we focus
our development of EPS on the concurrency among

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0918

substation, generation station, power company and control
area.

Figure 1. Construction of Electronic Power System

B. Prototype Verification System (PVS)

PVS is an integrated environment for formal
specification and verification. In order to support
modularity and reuse, specifications in PVS are logically
organized into parameterized theories, which can be linked
by import and export lists. We use a queue example to
explain how to build a theory. The queue is defined as a
THEORY associated with the generic parameter Item.
Meanwhile, the TYPE+ indicates that the type of the Item
is uninterpreted and nonempty. Function Join defines
receiving a new element item. Function Leave defines
leaving an old element item.

Queue [Item: TYPE+]: THEORY
BEGIN
items:
TYPE=[#size: nat, elements: ARRAY[{i|i<size} -> Item]#]
itms: VAR items
nonemptyqueue?(itms): bool=(size(itms)>0)
nitms: VAR (nonemptyqueue?)
join(item,itms):items=(#size:=size(itms)+1,

elements:=elements(itms) WITH [(size(itms)):=item]#)
leave(item, nitms): items=(#size:=size(nitms)-1, elements:=
(LAMBDA(j:{i|i<size(nitms)-1}): elements(nitms)(j+1))#)
END Queue
The theorem prover of PVS maintains a proof tree, and

the objective is to construct a complete proof tree in which
all leaves are trivially true. Each node of a proof tree is a
proof goal, which is a sequent consisting of a sequence of
formulas as antecedents and a sequence of formulas as
consequents. As an example shown in Fig. 2, the antecedent
is composed of two formula A1 and A2, and the consequent
is composed of two formulas B1 and B2.

Figure 2. PVS Proof Tree Node

The intuitive interpretation of a proof goal is that the

conjunction of the antecedents implies the disjunction of the
consequents. Users can guide the PVS theorem prover by
entering PVS proof commands which can be used to
introduce lemmas, expand definitions, apply decision
procedures, eliminate quantifiers, and so on.

III. DEPENDABLE EPSA

Figure 3. Dependable Electronic Power System Architecture

EPSA is proposed to guide the development of
electronic power system with high reliability requirements.
As shown in Fig.3, EPSA is composed of distributed
components:Substation, GeneratingStation, PowerCompany,
and Control-Area; share resources: PCDB, and CADB;
fault tolerant component: CC; and connectors: SPC, PCS,
PCG, GPC, PCA, and CAP.

The distributed component encapsulates its independent
data representation and their associated primitive operations.
Then several distributed components can execute
concurrently and corporate with each other to cater for the
same goal. The share resource is shared by all the
distributed components. The connector connects the in_port
of one distributed component and the out_port of another
distributed component.

EPSA integrates fault tolerant techniques with
functional aspects at the architecture level to satisfy high
reliability requirements. Once a local exception is raised in
one distributed component, the component can call the
corresponding exception handler in its own exception
context to cope with the exception. If this exception cannot
be handled successfully, the component should signal a
global exception and transfer it to the fault tolerant
component. When multiple global exceptions are raised
concurrently in specific distributed components, these
global exceptions are passed to the fault tolerant component.
The fault tolerant component resolves the received global
exceptions into a universal exception and broadcasts the
universal exception to related components and shared
resources within a network. The informed components can
deal with the exceptions based on the integrated exception
handling mechanisms.

IV. FORMAL MODEL OF EPSA USING PVS

The formal model of EPSA can provide precise idioms
and patterns to the system developers. The distributed
components, shared resources, connectors, and fault tolerant
components are all formally specified using PVS

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0919

specification language. We take the fault tolerant component
CC, and distributed component Substation as a snapshot to
illustrate the formal model of EPSA.

A. Formal Model of Fault Tolerant Component

The CC theory describes how the fault tolerant
component in EPSA implements the coordinated error
recovery mechanism when a global exception is raised in an
Object or multiple global exceptions are raised concurrently
in different Objects. This CC theory imports the generic-
type theory and the parameterized theory queue. Note that
theory queue is instantiated with type OBSTATE. The
OBSTATE denotes the state of distributed component,
either be normal, a local exception, a global exception, or
fail.

CC: THEORY
BEGIN
IMPORTING GenericType, Queue[EXCEPTION]
except_graph: [items[EXCEPTION] -> EXCEPTION]
exception: EXCEPTION
CC: TYPE = [#exceptions: items [EXCEPTION],

uni_exception: EXCEPTION #]
cc: VAR CC
emptycc: CC=(#exceptions:=empty, uni_exception:=e#)
ExceptRec(cc): CC=(#exceptions:=join (exception,

exceptions(cc)), uni_exception:=exception#)
ExceptGraph(cc): CC=
 IF exceptions(ExceptRec(cc)) /=empty

THEN (#exceptions:=empty, uni_exception:=
except_graph(exceptions(ExceptRec(cc)))#)

ELSE emptycc
ENDIF
In the CC theory, the function except_graph is declared

to model how to derive a global exception from a set of
global exception by using specific exception graph
methodology. Function ExceptRec represents that the fault
tolerant Component receives exception from the distributed
components. Function ExceptGraph specifies that the fault
tolerant component uses the function except_graph to set
the value of the uni_exception when receiving one or more
than one global exception.

B. Formal Model of Distributed Cmponent

The distributed component Substation sends the used
and required electronic power data to its parent power
company. When exceptions raised, the Substation can
handle these exceptions.

Substation[SRSTATE: TYPE+]: THEORY
BEGIN

IMPORTING CC
n_states, excepts: setof [SRSTATE]
tsin_ports, tsout_ports: setof [PORT]
dc_msg: [PORT -> MSG]
senddata: [[SRSTATE, [PORT -> AMSG]] ->

[SRSTATE]]
except_context: [EXCEPTION -> EH]
except_handle: [EH -> SRSTATE]
Station: TYPE = [# inter_state: SRSTATE, checkpoint:

SRSTATE, ue_rec: SIG #]
st : VAR Station

SendData (st):Station= IF member(inter_state (st),n_states)
THEN (#inter_state:=PROJ_1(senddata (inter_state (st),
(LAMBDA p: dc_msg (p)))), checkpoint:=inter_state(st),
ue_rec:=0 #)
ExceptPropagate(st):SRSTATE=IFmember(inter_state(st),
excepts) AND ue_rec(st)=0 THEN inter_state(st)
ccp: VAR CC
UniExceptReceive (st, ccp): Sensor=IF uni_exception=
except_graph(exceptions(ExceptRec(ccp))) THEN
(#inter_state: =uni_exception, checkpoint:=checkpoint(st),
ue_rec:=1 #)
UniExceptHandle (st): Station=
IF member(inter_state(st), excepts) AND ue_rec(st)=1
THEN (IF member(except_handle (except_context
(inter_state(st))), n_states) THEN
(#inter_state:= except_handle (except_context
(inter_state(st))), checkpoint: = inter_state(st), ue_rec:=0 #)
ELSIF
except_handle(except_context(inter_state(st)))=Fail
THEN (#inter_state:=Fail, checkpoint:=inter_state(st),
ue_rec:=0 #)

END Subsation
In the Substation theory, the function SendData sends

the electronic power data to the power company via
connectors. When the Substation raises a global exception,
the function ExceptPropagate is used to propagate the
raised exception to the fault tolerant component. The
function UniExceptReceive specifies when the distributed
component receives a universal exception (uni_exception)
from the fault tolerant component, the state of Substation
(inter state is updated to uni_exception and signal ue_rec is
updated to 1). Function UniExceptHandle changes the
states of four elements in the variable st according to the
result of exception handling with the universal exception. If
the Substation can successfully deal with the universal
exception by using specific exception handler, denoted as
checking whether the execution result is one of stable states
(n_states), the inter state of st would be set as a stable state,
otherwise the inter state would be a Fail state.

V. VERIFICATION OF EPSA USING PVS

Since EPSA is used to guide the development of
dependable electronic power system, it is important and
necessary to rigorously analyze the fault tolerant properties
of proposed EPSA. In this section, with the help of powerful
theorem proving of PVS, we can mechanically verify that
EPSA can satisfy the fault tolerant properties. The
verification about one significant fault tolerant property is
presented here to demonstrate EPSA can satisfy the high
reliability requirements.

A. A Fault Tolerant Property

When the Shared Resource PCDB is attacked, a
distributed component (e.g. PowerCompany) raises a global
exception PCDBAttacked, then the other distributed
components (e.g. Substation) should be informed about this
exception and deal with it. This property is firstly input to
the theorem prover of PVS, which is represented as the
consequent of a sequent, as shown below.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0920

pcdb_ pred1 :
|-------
{1} (EXISTS (pc: PowerCompany): member (inter_state (sr),
excepts) AND ue_rec(sr) = 0) IMPLIES

(FORALL (ss: Substation), (ccp: CC):
inter_state (UniExceptReceive(dc, ccp)) = except_graph

(exceptions(ExceptRec(ccp))))
Rule?: (flatten)
tsft_ pred1 :
{-1} (EXISTS (pc: PowerCompany): member
(inter_state(sr),excepts) AND ue_rec(sr) = 0)
|-------
{1} (FORALL (ss: Substation), (ccp: CC):

inter_state(UniExceptReceive(obj, ccp)) = except_graph
(exceptions(ExceptRec(ccp))))

Rule?:
During a proof, we enter PVS proof commands after

Rule?, which is prompted by the PVS prover so as to
interactively verify the property. For example, proof
command flatten converts the consequent, namely, pred1 ft
into a sequent, by eliminating the disjunctive connectives
(denoted by IMPLIES here).

B. Verification of Fault Tolerant Property

The PVS proof commands after each Rule? constitute
the proof script for the property verification. As shown
below, the proof script of property pcdb_pred1 starts with
proof command flatten, followed by skolem! which replaces
the existentially quantified variable obj in the antecedent (as
prefixed by {-1}) with an constant pc!1.

(flatten)(skolem!)
(lemma "Propagate")(assert)(skolem!)(instantiate –1 ("pc!1"))
(assert)(prop)(hide -2)(hide -2)
(lemma "Propagate")(assert)(skolem!)(instantiate -1("coc!1"))
(assert)(prop)(hide -3)(hide -3)
(lemma "ExceptPropagate")(instantiate -1 ("pc!1"))
(replace -1 (-1 -3) rl)(hide -1)
(lemma "NonEmpty")(instantiate -1 ("ccp!1" "pc!1"))
(lemma "CCReceive")(instantiate -1 ("ccp!1"))(assert)
(lemma "ExceptGraph1")(instantiate -1 ("ccp!1" "ss!1"))
(replace -1 (-1 -2) rl)(hide -1)
(lemma "UniExcept")(instantiate -1 ("ccp!1" "dc!1"))(prop)
(lemma "ExceptGraph1")(instantiate -1 ("ccp!1" "crr!1"))
(replace -1 (-1 -2) rl)(hide -1)
(lemma "UniExcept")(instantiate -1 ("ccp!1" "crr!1"))(prop)

Followed skolem!, there are several user defined
lemmas which have been proved to be true. These lemmas
can induce the property verification until the verification
result is true. The strategy of the proof is that since the
condition of property pcdb_pred1 is that the state of
PowerCompany 1) one of the global exceptions, and 2) has
not received a universal exception from the fault tolerant
component, the PowerCompany should send such exception
to the fault tolerant component. Furthermore, the fault
tolerant component needs to receive the raised exception.
When receiving an exception, the fault tolerant component
should put such exception into an exception list(exceptions)
by using function ExceptRec defined in the coordinating
theory, Lemma NonEmpty implies that the exception list of
the fault tolerant component is not empty, denoted as

exceptions(ExceptRec(cc))/=empty. When the exception
list is not empty, Lemma CCReceive is applied to induce
the universal exception(uni_exception) which covers all
received exceptions by using function except_graph, where
uni_exception =except _graph(exceptions(ExceptRec(cc))).
After obtaining the universal exception, the fault tolerant
component should send it to the distributed component
Substation. Lemma ExceptGraph1 indicates that the
Substation receives the universal exception by using the
function UniExceptReceive. By using lemma CCReceive,
we can get that, inter_state(UniExceptReceive(obj, ccp)) =
except_graph(exceptions(ExceptRec(cc))),which is the de-
duction result of pcdb_pred1. By running the above proof
script, the PVS theorem prover can verify the pcdb_pred1
property automatically.

Other fault tolerant properties, such as CADB is
attacked, or both PCDA and CADB are attacked, can be
verified using the theorem prover of PVS.

VI. CONCLUSION

In this paper, we propose an Electronic Power System
Architecture (EPSA) to provide a framework to guide the
development of dependable electronic power systems. The
formal model of EPSA is presented to provide precise
idioms and patterns to the system designers. With the help of
powerful theorem prover of PVS, the fault tolerant
properties of EPSA are verified with high degree of
automation, which can demonstrate the proposed EPSA can
satisfy high reliability requirements.

ACKNOWLEDGMENT

The authors would like to thank for the sponsor
supported by National Natural Science Fund (No. 61100059).

REFERENCES
[1] M. Shaw, “The coming-of-age of software architecture research”,

Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), 2001.

[2] D.Garlan and M.Shaw, “Introduction to software arch-itecture”,
IEEE Transactions on Software Engineering. 1995, 21(4): 269-274.

[3] J.C.Laprie, “Dependability basic concepts and terminology”,
Dependable Computing and Fault Tolerant Systems. Springer-Verlag,
1992.

[4] M.Xie, K.L.Poh, and Y.S.Dai,“Computing system reliability: models
and analysis”, Springer, 2004.

[5] G.T.Leavens and M.Sitaraman, “Foundations of component-based
systems”, Cambridge University Press, 2000.

[6] G.D.Abowd, R.Allen, and D.Garlan, “Formalizing style to
understand descriptions of software architecture”, ACM Transactions
on Software Engineering and Methodology, 1995, vol4(4): 319-364.

[7] J.Sun and J.S.Dong, “Specifying and reasoning about generic
architecture in TCOZ”,. In Proceedings of the 9th Asia-Pacific
Software Engineering Conference (APSEC’02), IEEE Computer
Society Press, 2002: 405-414.

[8] M.Shaw and D.Garlan, “Software architecture: perspectives on an
emerging discipline”, Prentice Hall, 1996.

[9] S.Owre and N.Shankar, “The formal semantics of PVS”, Computer
Science Laboratory, SRI International, Menlo Park, CA, 1997.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0921

