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Abstract—Building an efficient data structure for range 
selection problems is considered. While there are several 
theoretical solutions to the problem, only a few have been tried 
out, and there is little idea on how the others would perform. 
The computation model used in this paper is the RAM model 

with word-size )log( nΘ . Our data structure is a practical 

linear space data structure that supports range selection 

queries in )log( nO  time with )log( nnO  preprocessing 

time. 
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I.  INTRODUCTION  

In this work, we consider the problem of building an 
efficient data structure for range selection queries. The 
problem is to preprocess an input array A  of n  integers, 
such that given a query ),,( kji , we can report the k′ th 

smallest integer in the subarray ][,1],[],[ jAiAiA +  
efficiently. In the rest of the paper, the subarray 

][,1],[],[ jAiAiA +  is denoted as ],[ jiA . A special 
case of the problem is known as range median query, which 

arises when k  is fixed to +− 1)/2( ij . The prefix 
selection query is another special case of the problem, which 
arises when i  is fixed to 0. These problems have many 
important applications in statistical analysis, and have been 
studied extensively in the last few years, see e.g. [1, 2, 3, 6]. 

We present a practical study on data structures for 
sequences supporting range selection queries. While there 
are several theoretical solutions to the problem, only a few 
have been tried out, and there is little idea on how the others 
would perform [5, 7, 8, 9]. The computation model used in 
this paper is the RAM model with word-size )log( nΘ . The 
data structure presented in this paper has the same basic 
approach as in [4]. We design a practical linear space data 
structure that supports range selection queries in )log( nO  
time. 

The organization of the paper is as follows. In the 
following 3 sections we describe our general data structure 
design paradigm. 

In section 2 we give an extremely simple data structure 
for answering range selection queries with )log( nnO  time 
and space. Then the space consumption of the data structure 
is reduced to )(nO . 

In section 3 we give a computational study of the 
presented data structure which demonstrates that the 

achieved results are not only of theoretical interest, but also 
that the techniques developed may actually lead to a practical 
data structure for general range selection algorithms. 

Some concluding remarks are in section 4. 

II. THE ALGORITHM DESIGN 

A. A Simple Data Structure 

Let 1])[,[1],[0],(= −nAAAA   be the input 

array. Our data structure is a complete binary tree. We sort 
the array A  and build a corresponding complete binary tree 
T  that stores the n  elements in the leaves in sorted order. 

For a node v  in the tree T , the subtree rooted at node 

v  is denoted as vT , and the number of leaves in vT  is 

denoted as || vT . In each node v  of T , the || vT  elements 

in the leaves of subtree rooted at node v  are stored in an 

array vA  of size || vT  sorted by their index in A . 

The construction of the basic data structure can be 
described as follows. 

 
Algorithm II.1: PREPROCESS(A,n) 
comment: Build range select data structure 
y ← INDEXSORT(A) 
v ← BUILD(y,0,n − 1) 
return (v) 

 
In the above algorithm, we first sort the input array A  

into an index array y  by the algorithm IndexsortA  such 

that the sequence 1]][[,[1]],[[0]],[ −nyAyAyA   is 

exactly the n  elements 1][,[1],[0], −nAAA   of the 

input array in sorted order. Then the actual construction of 
the tree T  is performed by the recursive algorithm 

lastfirstBuildy ,,  as follows. 

 
Algorithm II.2: BUILD(y,first,last) 
comment: Construct the tree recursively 
  mid ← (first + last)/2 
  if last > first 
  then 
     left ← BUILD(y,first,mid) 
     right ← BUILD(y,mid + 1,last) 
  v ← MAKE-TREE(left,right) 
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  Av← MERGE(left.Av,right.Av) 
  return (v) 

 
In the algorithm lastfirstBuildy ,, , the parameters 

first  and last  indicate the begin and end positions of 

array vA  in array y , which is the index array computed by 

IndexsortA . The tree T  is built recursively in a bottom 

up manner. The sub-algorithm vv ArightAMergeleft .,.  

merges the two arrays in the subtrees of v  into an array vA  

of size 1|=| +− firstlastTv  sorted by their index in A . 

This merge procedure is exactly the same as the merge 
procedure of merge sort algorithm. 

Since our algorithm for constructing the basic data 
structure is essentially a sorting process, we can readily 
conclude that our algorithm uses )log( nnO  time and 

)log( nnO  words of space in the worst case. 

If we visit the nodes of the complete binary tree T  by 
an in-order traversal we can see that, at any node v  of T , 

the elements in the array vA  are subdivided into two parts 

of (almost) equal size and stored in the left child and the 
right child nodes of v . The two parts in the subtrees are 
recursively subdivided further. 

To answer a range selection query, we first visit the 
root of T  and determine in which of its two subtrees the 
element of the desired rank lies. Once this is known, the 
search continues recursively in the appropriate subtree until 
a trivial problem of constant size is encountered. 

The algorithm for answering the range selection 
queries ),,( kji  is described as follows. 

 
Algorithm II.3: QUERY(v,first,last,i,j,k) 
comment: Answer range selection queries (i,j,k) 
 m ← (first + last)/2 
 if last = first 
 then return (A[y[first]]) 
 l ← RANK(v.l,i − 1) 
 r ← RANK(v.l,j) 
 s ← r − l 
 if k ≤ s 
 then return (QUERY(v.l,first,m,l,r − 1,k)) 
 else return (QUERY(v.r,m + 1,last,i − l,j − r,k − s))

 
In the above algorithm kjilastfirstQueryv ,,,,, , 

we want to find the element of rank k  in the subarray 

],[ jiA  from node v  of T , where array vA  begins at 

position first  and ends at position last  of array y . 

The number l  is the rank of 1−i  in the array vA  of 

the left subtree leftv. . It means that there are l  elements in 

the left subtree leftv.  are to the left of i  in the subarray 

],[ jiA . The number r  is the rank of j  in the array vA  of 

the left subtree leftv. . It means that there are r  elements in 

the left subtree leftv.  are to the left of and up to j  in the 

subarray ],[ jiA . Thus the number s  is the number of 

elements in the array vA  of the left subtree leftv.  

contained in in the subarray ],[ jiA . 

If sk ≤  then the element of rank k  in ],[ jiA  is the 

element of rank k  in the subarray 1],[ −rlAv  of the left 

subtree leftv. . Otherwise, the element of rank k  is the 

element of rank sk −  in the subarray ],[ rjliAv −−  of 

the right subtree rightv. . 

Thus the algorithm reduces the problem of finding an 
element of a given rank in the subarray ],[ jiA  to the same 

problem, but on a smaller array. This reduction is applied 
recursively by the algorithm. 

The number l  and r  can be found in 

1)/2))((log( +− firstlastO  time by a binary search. 

The query descends nlog  levels of recursion, so the 

algorithm Query  would get a total execution time of up to 

)log(=)/2log( 2log

1=
nOnO in

i . 

B. An Improved Data Structure 

In the algorithm kjilastfirstQueryv ,,,,,  we can 

see that to find out in which subtrees the element of rank k  
lies, only the array stored in the left subtree is used. 
Therefor, we can lift it to the node v  and thus save half of 
the total space costs. Furthermore, we note that to compute 
the numbers l  and r , the information available in the 
arrays stored at the interior nodes of our data structure can 
be reduced further. We can use a bit-vector to store the 
information we need, where a 1-bit indicates whether an 

element of the original array is in vA . Since we have n  

positions one very level, a total of )log( nnO  bits are used 

in our data structure. 
With these bit-vectors, the execution time of the 

algorithm Query  can also be reduced. 

In order to compute the number l  and r  in the query 
algorithm efficiently, we can store a table with ranks for 
indices that are a multiple of the size of machine word w . 
General ranks are then the sum of the next smaller table 
entry and the number of 1-bits in the bit-vector between this 
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rounded position and the query position. In this way, the 
number l  and r  can be computed in (1)O  time. Therefore 

the execution time of the algorithm Query  can be reduced 

to )log( nO . 

Summing up, we have obtained a data structure for 
solving range selection problem with preprocessing time 

)log( nnO  using )(nO  space and query time )log( nO . 

This improves the space consumption compared to [16] by a 

factor )loglog/log( 2 nnO . 

III. THE EXPERIMENTS 

In this section we will describe the implementation of 
the data structure presented in last section. Based on the 
discussion above, we can design an node class for the nodes 
of the complete binary tree of our new data structure. 

In the node class we store a bitvector low  to indicate 
the elements in the left subtree of current node sorted by 
their index in A . 

The vector t  is a table with ranks for indices that are a 
multiple of the size of machine word w . With the vector t  

the rank of an index in the bitvector low  can be computed 

in (1)O  time. The complete binary tree of our new data 

structure is built recursively in a bottom up manner. For the 
current node, the two arrays of its subtrees are merged into 
one array and then the bitvector low  is formed. According 

to the information of low , the vector t  can then be 
constructed readily. The merge procedure is exactly the 
same as the merge procedure of merge sort algorithm.  In 
the algorithm init , the parameters first  and last  

indicate the begin and end positions of array vA  in array y , 

which is the index array computed by the Indexsort  

algorithm. The size of bitvector low  must be 

1+− firstlast  bits. 

A dequeue is used for merging two sorted arrays 
],[ midfirsty  and ]1,[ lastmidy + . In the merge 

process, if the next element comes from the first array 
],[ midfirsty , then the corresponding bit of bitvector 

low  is marked true. When the two arrays are sorted, the 

bitvector low  is built. The table t  can then be constructed 

easily from the bitvector low . 

With the class node , we can design a new class 

rmedian  for our new data structure for general range 

selection query as follows. In the class rmedian , array 

data  is used to store the input sequence. The arrays y  and 

z  are used to store the sorted index arrays of the input 
sequence. The main part of the class is a vector bt  of 

element type node . This vector is used to store the 

complete binary tree T  that the n  elements of the input 
sequence are stored in its leaves in sorted order. The vector 
bt  is in fact an array indexed binary tree. The root of the 

tree is [0]bt . For a given index i  of a node, the left and 

right child node of ][ibt  are 1]*[2 +ibt  and 

2]*[2 +ibt  respectively. The parent node of of ][ibt  is 

1)/2][( −ibt . 

The vector bt  can be built recursively in a bottom up 

manner. Once an instance of rmedian  is built, we can 

then answer any range selection query in )log( nO  time. 

For any range selection query QUERY(ind, first, last, 
left, right, rank), we want to find the element of rank rank  

in the subarray ],[ rightleftA  from node ][= indbtv  of 

bt , where array vA  begins at position first  and ends at 

position last  of array z . 

We first find the number l  and r , which are the ranks 

of 1−left  and right  in the array vA  of the left subtree of 

node v  respectively. 

Thus the number lrlength −=  is computed, which 

is the number of elements in the array vA  of the left subtree 

of v  contained in in the subarray ],[ rightleftA . 

If lengthrank ≤  then the element of rank rank  in 

],[ rightleftA  is the element of rank rank  in the 

subarray 1],[ −rlAv  of the left subtree of v . Otherwise, 

the element of rank rank  is the element of rank 

lengthrank −  in the subarray ],[ rrightlleftAv −−  of 

the right subtree of v . 
The algorithm reduces the problem of finding an 

element of a given rank in the subarray ],[ rightleftA  to 

the same problem, but on a smaller array. This reduction is 
applied recursively by the algorithm. 

We implemented our data structure in C++ and tested 
them on a personal computer with Pentium(R) Dual Core 
CPU 2.10 GHz and 2.0 Gb RAM, using the Microsoft 
Visual C++ version 8.0 compilers. The word size of the 
processor is 32=w . 

The experiment results show that our data structure is 
very practical for solving the range selection query problem. 

We also performed some limited experiments on the 
relative performance of our data structure. The new data 
structure has similar or better speed than existing data 
structures but uses less space in the worst case. 

 

IV. CONCLUDING REMARKS 

We have presented new data structure for solving the 
range selection query problem. While there are several 
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theoretical solutions to the problem, only a few have been 
tried out, and there is little idea on how the others would 
perform. The computation model used in this paper is the 
RAM model with word-size )log( nΘ . Our data structure 

is a practical linear space data structure that supports range 
selection queries in )log( nO  time with )log( nnO  

preprocessing time. 
The computational experiments in Section 3 

demonstrate that the achieved results are not only of 
theoretical interest, but also that the techniques developed 
may actually lead to considerably faster algorithms. 
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