
Efficient Data Structures for Range Selections Problem

Xiaodong Wang
Faculty of Mathematics & Computer Science

Fuzhou University, Fuzhou, China
Quanzhou Normal University

Jun Tian*
School of Public Health

Fujian Medical University
Fuzhou, China

Abstract—Building an efficient data structure for range
selection problems is considered. While there are several
theoretical solutions to the problem, only a few have been tried
out, and there is little idea on how the others would perform.
The computation model used in this paper is the RAM model

with word-size)log(nΘ . Our data structure is a practical

linear space data structure that supports range selection

queries in)log(nO time with)log(nnO preprocessing

time.
Keywords- range selection; RAM model; data structure

I. INTRODUCTION

In this work, we consider the problem of building an
efficient data structure for range selection queries. The
problem is to preprocess an input array A of n integers,
such that given a query),,(kji , we can report the k′ th

smallest integer in the subarray][,1],[],[jAiAiA +
efficiently. In the rest of the paper, the subarray

][,1],[],[jAiAiA + is denoted as],[jiA . A special
case of the problem is known as range median query, which

arises when k is fixed to +− 1)/2(ij . The prefix
selection query is another special case of the problem, which
arises when i is fixed to 0. These problems have many
important applications in statistical analysis, and have been
studied extensively in the last few years, see e.g. [1, 2, 3, 6].

We present a practical study on data structures for
sequences supporting range selection queries. While there
are several theoretical solutions to the problem, only a few
have been tried out, and there is little idea on how the others
would perform [5, 7, 8, 9]. The computation model used in
this paper is the RAM model with word-size)log(nΘ . The
data structure presented in this paper has the same basic
approach as in [4]. We design a practical linear space data
structure that supports range selection queries in)log(nO
time.

The organization of the paper is as follows. In the
following 3 sections we describe our general data structure
design paradigm.

In section 2 we give an extremely simple data structure
for answering range selection queries with)log(nnO time
and space. Then the space consumption of the data structure
is reduced to)(nO .

In section 3 we give a computational study of the
presented data structure which demonstrates that the

achieved results are not only of theoretical interest, but also
that the techniques developed may actually lead to a practical
data structure for general range selection algorithms.

Some concluding remarks are in section 4.

II. THE ALGORITHM DESIGN

A. A Simple Data Structure

Let 1])[,[1],[0],(= −nAAAA  be the input

array. Our data structure is a complete binary tree. We sort
the array A and build a corresponding complete binary tree
T that stores the n elements in the leaves in sorted order.

For a node v in the tree T , the subtree rooted at node

v is denoted as vT , and the number of leaves in vT is

denoted as || vT . In each node v of T , the || vT elements

in the leaves of subtree rooted at node v are stored in an

array vA of size || vT sorted by their index in A .

The construction of the basic data structure can be
described as follows.

Algorithm II.1: PREPROCESS(A,n)
comment: Build range select data structure
y ← INDEXSORT(A)
v ← BUILD(y,0,n − 1)
return (v)

In the above algorithm, we first sort the input array A

into an index array y by the algorithm IndexsortA such

that the sequence 1]][[,[1]],[[0]],[−nyAyAyA  is

exactly the n elements 1][,[1],[0], −nAAA  of the

input array in sorted order. Then the actual construction of
the tree T is performed by the recursive algorithm

lastfirstBuildy ,, as follows.

Algorithm II.2: BUILD(y,first,last)
comment: Construct the tree recursively
 mid ← (first + last)/2
 if last > first
 then
 left ← BUILD(y,first,mid)
 right ← BUILD(y,mid + 1,last)
 v ← MAKE-TREE(left,right)

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0133

 Av← MERGE(left.Av,right.Av)
 return (v)

In the algorithm lastfirstBuildy ,, , the parameters

first and last indicate the begin and end positions of

array vA in array y , which is the index array computed by

IndexsortA . The tree T is built recursively in a bottom

up manner. The sub-algorithm vv ArightAMergeleft .,.

merges the two arrays in the subtrees of v into an array vA

of size 1|=| +− firstlastTv sorted by their index in A .

This merge procedure is exactly the same as the merge
procedure of merge sort algorithm.

Since our algorithm for constructing the basic data
structure is essentially a sorting process, we can readily
conclude that our algorithm uses)log(nnO time and

)log(nnO words of space in the worst case.

If we visit the nodes of the complete binary tree T by
an in-order traversal we can see that, at any node v of T ,

the elements in the array vA are subdivided into two parts

of (almost) equal size and stored in the left child and the
right child nodes of v . The two parts in the subtrees are
recursively subdivided further.

To answer a range selection query, we first visit the
root of T and determine in which of its two subtrees the
element of the desired rank lies. Once this is known, the
search continues recursively in the appropriate subtree until
a trivial problem of constant size is encountered.

The algorithm for answering the range selection
queries),,(kji is described as follows.

Algorithm II.3: QUERY(v,first,last,i,j,k)
comment: Answer range selection queries (i,j,k)
 m ← (first + last)/2
 if last = first
 then return (A[y[first]])
 l ← RANK(v.l,i − 1)
 r ← RANK(v.l,j)
 s ← r − l
 if k ≤ s
 then return (QUERY(v.l,first,m,l,r − 1,k))
 else return (QUERY(v.r,m + 1,last,i − l,j − r,k − s))

In the above algorithm kjilastfirstQueryv ,,,,, ,

we want to find the element of rank k in the subarray

],[jiA from node v of T , where array vA begins at

position first and ends at position last of array y .

The number l is the rank of 1−i in the array vA of

the left subtree leftv. . It means that there are l elements in

the left subtree leftv. are to the left of i in the subarray

],[jiA . The number r is the rank of j in the array vA of

the left subtree leftv. . It means that there are r elements in

the left subtree leftv. are to the left of and up to j in the

subarray],[jiA . Thus the number s is the number of

elements in the array vA of the left subtree leftv.

contained in in the subarray],[jiA .

If sk ≤ then the element of rank k in],[jiA is the

element of rank k in the subarray 1],[−rlAv of the left

subtree leftv. . Otherwise, the element of rank k is the

element of rank sk − in the subarray],[rjliAv −− of

the right subtree rightv. .

Thus the algorithm reduces the problem of finding an
element of a given rank in the subarray],[jiA to the same

problem, but on a smaller array. This reduction is applied
recursively by the algorithm.

The number l and r can be found in

1)/2))((log(+− firstlastO time by a binary search.

The query descends nlog levels of recursion, so the

algorithm Query would get a total execution time of up to

)log(=)/2log(2log

1=
nOnO in

i .

B. An Improved Data Structure

In the algorithm kjilastfirstQueryv ,,,,, we can

see that to find out in which subtrees the element of rank k
lies, only the array stored in the left subtree is used.
Therefor, we can lift it to the node v and thus save half of
the total space costs. Furthermore, we note that to compute
the numbers l and r , the information available in the
arrays stored at the interior nodes of our data structure can
be reduced further. We can use a bit-vector to store the
information we need, where a 1-bit indicates whether an

element of the original array is in vA . Since we have n

positions one very level, a total of)log(nnO bits are used

in our data structure.
With these bit-vectors, the execution time of the

algorithm Query can also be reduced.

In order to compute the number l and r in the query
algorithm efficiently, we can store a table with ranks for
indices that are a multiple of the size of machine word w .
General ranks are then the sum of the next smaller table
entry and the number of 1-bits in the bit-vector between this

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0134

rounded position and the query position. In this way, the
number l and r can be computed in (1)O time. Therefore

the execution time of the algorithm Query can be reduced

to)log(nO .

Summing up, we have obtained a data structure for
solving range selection problem with preprocessing time

)log(nnO using)(nO space and query time)log(nO .

This improves the space consumption compared to [16] by a

factor)loglog/log(2 nnO .

III. THE EXPERIMENTS

In this section we will describe the implementation of
the data structure presented in last section. Based on the
discussion above, we can design an node class for the nodes
of the complete binary tree of our new data structure.

In the node class we store a bitvector low to indicate
the elements in the left subtree of current node sorted by
their index in A .

The vector t is a table with ranks for indices that are a
multiple of the size of machine word w . With the vector t

the rank of an index in the bitvector low can be computed

in (1)O time. The complete binary tree of our new data

structure is built recursively in a bottom up manner. For the
current node, the two arrays of its subtrees are merged into
one array and then the bitvector low is formed. According

to the information of low , the vector t can then be
constructed readily. The merge procedure is exactly the
same as the merge procedure of merge sort algorithm. In
the algorithm init , the parameters first and last

indicate the begin and end positions of array vA in array y ,

which is the index array computed by the Indexsort

algorithm. The size of bitvector low must be

1+− firstlast bits.

A dequeue is used for merging two sorted arrays
],[midfirsty and]1,[lastmidy + . In the merge

process, if the next element comes from the first array
],[midfirsty , then the corresponding bit of bitvector

low is marked true. When the two arrays are sorted, the

bitvector low is built. The table t can then be constructed

easily from the bitvector low .

With the class node , we can design a new class

rmedian for our new data structure for general range

selection query as follows. In the class rmedian , array

data is used to store the input sequence. The arrays y and

z are used to store the sorted index arrays of the input
sequence. The main part of the class is a vector bt of

element type node . This vector is used to store the

complete binary tree T that the n elements of the input
sequence are stored in its leaves in sorted order. The vector
bt is in fact an array indexed binary tree. The root of the

tree is [0]bt . For a given index i of a node, the left and

right child node of][ibt are 1]*[2 +ibt and

2]*[2 +ibt respectively. The parent node of of][ibt is

1)/2][(−ibt .

The vector bt can be built recursively in a bottom up

manner. Once an instance of rmedian is built, we can

then answer any range selection query in)log(nO time.

For any range selection query QUERY(ind, first, last,
left, right, rank), we want to find the element of rank rank

in the subarray],[rightleftA from node][= indbtv of

bt , where array vA begins at position first and ends at

position last of array z .

We first find the number l and r , which are the ranks

of 1−left and right in the array vA of the left subtree of

node v respectively.

Thus the number lrlength −= is computed, which

is the number of elements in the array vA of the left subtree

of v contained in in the subarray],[rightleftA .

If lengthrank ≤ then the element of rank rank in

],[rightleftA is the element of rank rank in the

subarray 1],[−rlAv of the left subtree of v . Otherwise,

the element of rank rank is the element of rank

lengthrank − in the subarray],[rrightlleftAv −− of

the right subtree of v .
The algorithm reduces the problem of finding an

element of a given rank in the subarray],[rightleftA to

the same problem, but on a smaller array. This reduction is
applied recursively by the algorithm.

We implemented our data structure in C++ and tested
them on a personal computer with Pentium(R) Dual Core
CPU 2.10 GHz and 2.0 Gb RAM, using the Microsoft
Visual C++ version 8.0 compilers. The word size of the
processor is 32=w .

The experiment results show that our data structure is
very practical for solving the range selection query problem.

We also performed some limited experiments on the
relative performance of our data structure. The new data
structure has similar or better speed than existing data
structures but uses less space in the worst case.

IV. CONCLUDING REMARKS

We have presented new data structure for solving the
range selection query problem. While there are several

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0135

theoretical solutions to the problem, only a few have been
tried out, and there is little idea on how the others would
perform. The computation model used in this paper is the
RAM model with word-size)log(nΘ . Our data structure

is a practical linear space data structure that supports range
selection queries in)log(nO time with)log(nnO

preprocessing time.
The computational experiments in Section 3

demonstrate that the achieved results are not only of
theoretical interest, but also that the techniques developed
may actually lead to considerably faster algorithms.

REFERENCES

[1] M. J. Atallah and H. Yuan, Data structures for range minimum

queries in multidimensional arrays, In Proceedings of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 150-160,
2010.

[2] G. S. Brodal and A. G. Jorgensen, Data structures for range median
queries, In Proceedings of the 20th International Symposium on
Algorithms and Computation, 822-831, 2009.

[3] M. Chan, Persistent predecessor search and orthogonal point location
in the word RAM, In Proceedings of the 22nd ACM/SIAM
Symposium on Discrete Algorithms (SODA), 1131-1145, 2011.

[4] B. Gfeller and P. Sanders. Towards optimal range medians. In
Proceedings of the 36th International Colloquium on Automata,
Languages and Programming, 475-486, 2009.

[5] D. Krizanc, P. Morin, and M. H. M. Smid, Range mode and range
median queries on lists and trees. Nordic Journal of Computing,
12(1):1-17, 2005.

[6] Kasper Green Larsen, The cell probe complexity of dynamic range
counting, In Proceedings 44th ACM Symposium on Theory of
Computing (STOC), 2012.

[7] H. Petersen, Improved bounds for range mode and range median
queries, In Proceedings of the 34th Conference on Current Trends in
Theory and Practice of Computer Science , 418-423, 2008.

[8] H. Petersen and S. Grabowski, Range mode and range median queries
in constant time and sub-quadratic space, Information Processing
Letters, 109(4):225-228, 2008.

[9] D. E. Willard, Log-logarithmic worst-case range queries are possible
in space Theta(n), Information Processing Letters, 17(2):81-84, 1983.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0136

