Grinding Force and Feed in Grinding the Spring End

Jingen Huang
Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province
Hangzhou, China
sijian168@126.com

Fuqiang Ying
Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province
Hangzhou, China
motor@zjut.edu.cn

Abstract — As a case study of vertical shaft spring grinder, this paper analyses the process of spring end grinding and establishes geometric model of spring face grinding, then calculates the formula of grinding force by the formula of surface grinding machine with vertical spindle and rotary table. Meanwhile, the paper also analyses the relation of grinding feed and depth, and applies controlled-force grinding to spring end grinding. In order to guarantee the grinding force with a fixed value, the grinding feed will be changed with the grinding depth. Considering the spring as an elastomeric, the wheel’s feed is composed of grinding feed and compensating feed when the spring end is ground.

Keywords—Spring End Grinding Machine; Spring; Face Grinding; Grinding Force; Feed

I. INTRODUCTION

The purpose of spring end grinding is to correct the verticality of spring and the parallelism of both spring ends, and to make spring ends and other components in close contact, and to improve the service life of compression spring by uniform pressure. [1] The requirements of the spring end grinding describe as follows: ① the grinding angle is at least 270°; ② the thickness of the end needs to be not less than 1/8 of the spring wire diameter (1/4 is the best).[2]

Spring end grinding belongs to face grinding, and the characteristic of the spring determines unique grinding process. With the change of grinding depth, grinding area and positive pressure between spring and wheel change in the spring end grinding process. In this way, if the pressure grinding is adopted, the grinding force will be inconstant and grinding efficiency must be low. To improve grinding efficiency and grinding accuracy, the control force grinding is applied with constant grinding force. This grinding method is good for the low-rigidity grinding system. According to the spring grinding process, this paper deduces the grinding force of spring end grinding which are based on the grinding face formula of vertical axis surface grinder with round table.

The grinding force formula of vertical axis surface grinder with round table [5]:

\[F_a = 9.8 \left[C_F \cdot \pi \cdot n \cdot f_a \cdot R^2 / v_2 \right] \tan \beta \] (1)

Where \(F_a \) is vertical grinding force, N; \(n \) is the speed of spring, m/s; \(v_2 \) is the speed of wheel, m/s; \(f_a \) is axial feed, mm; \(C_F \) is the energy which are required to remove unit volume of abrasive dust, kgf/mm²; \(\beta \) is the half-angle of abrasive cone, 61°~69°35′; \(R \) is the radius of workbench, mm.

Where \(\pi \cdot n \cdot f_a \cdot R^2 \) is the volume of abrasive dust in unit time. \(V \) is the volume of abrasive dust of single spring in unit time; \(N \) is the number of grinding spring in unit time. So the formula of axial grinding force of spring end grinder is:

\[F_a = 9.8 \left[C_F \cdot N \cdot V / v_2 \right] \tan \beta \] (2)

III. GEOMETRY MODEL OF SPRING GRINDING

The volume of abrasive dust of single spring in unit time, will be derived by selecting single spring for research object. According to the grinding features of the helical cylindrical compression spring, get spring end ring straightened out, as showed in fig.1. Fig.2 shows sectional view of spring end ring when end grinding. In the picture, \(\alpha \) is spring spiral angle (typically 5°~9°). OB is total grinding height, which is typically 3/4 wire diameter. h is arbitrary grinding height, make a line to parallel AC ,which line through the point P and intersects with the lines AB, BC at M, N (see Fig.1).

Fig.1. Geometry model of spring end ring
As showed in Fig.2, the area of shaded parts is grinding area in arbitrary grinding height. Known form geometrical relationship, grinding area is always an ellipse that \(\frac{d}{\sin \alpha} \) is major axis and \(d \) is minor axis, where \(d \) is wire diameter.

With grinding area which lines in grinding depth \(h \) increase, line MN will increase and point N will gradually close to another elliptic endpoint, so area of shaded parts will increase. Order \(a=\frac{d}{\sin \alpha}, b=d, \)

\[
I=\sqrt{\frac{2h}{a}} \int_0^a \sqrt{a^2-x^2} \, dx
\]

\[
=b\left(\frac{1}{a} \right)^2 \sqrt{2al-l^2} + ab \arcsin \left(1 - \frac{a}{2} + \frac{1}{2} \right)
\]

(4)

Because grinding depth is very small when spring is grinded, the grinding volume of single spring can be worked out, as follow.

\[
V = \int Sdh \approx S \cdot a_p = [b\left(\frac{1}{a} \right)^2 \sqrt{2al-l^2} + ab \arcsin \left(1 - \frac{a}{2} + \frac{1}{2} \right)] \cdot a_p
\]

(5)

IV. SOLUTION OF THE NUMBER OF GRINDING SPRING IN UNIT TIME

The number of grinding spring in unit time has a relationship with the center distance between tray and wheel, the diameter of trough relative to the center of tray and the speed of tray. As shown in Fig.3.

![Fig.3. Shows position between tray and wheel](image)

\[
N = \sum_{i=1}^{m} \left(\frac{v_i}{D} + \frac{\pi \cdot d_i}{180} \arccos \left(\frac{d_i^2 + 4L^2 - d_s^2}{4L \cdot d_i}\right)\right)
\]

(6)

Where \(m \) is the number of turns of spring trough in tray, typically is 1–3; \(i \) is the \(i \)-th ring of spring trough; \(v_i \) is the speed of the \(i \)-th trough relative to the center of tray, m/s; \(d_i \) is the diameter of trough relative to the center of tray, mm; \(d_s \) is the diameter of wheel, mm; \(D \) is the diameter of trough, mm.

V. SOLUTION OF THE GRINDING FORCE AND FEED

Grinding force between wheel and spring in grinding can decompose into three component force: tangential force \(F_t \) which follows tangential direction of rotate wheel; radial force \(F_r \); axial force \(F_a \). According to some theories in the literature, because wheel is composed of abrasive grains, radial force \(F_r \) and axial force \(F_a \) are very small. Therefore, the two force are out of account in this paper. From Eqs.(2) and (5), we can get grinding force’s formula, as following equation:

\[
F_a = 9.81 \cdot a_p \{C_x \cdot \left[\frac{l}{a} \right] \sqrt{2al-l^2} + ab \arcsin \left(1 - \frac{a}{2} + \frac{1}{2} \right) \cdot \frac{N}{v_2} \tan \beta\}
\]

(7)

Wheel cutting-in of face grinding is equal to wheel down feed, and grinding depth of surface grinding is typically 10–50 \(\mu \)m. We can assume that springs are grinded with a minimum depth when grinded to max grinding height, that is \(h=3/4d, a_p=10\mu m, \)

\[
F_{a(UP=0.01)} = 0.0981 \{C_x \cdot \left[\frac{l}{a} \right] \sqrt{2al-l^2} + ab \arcsin \left(1 - \frac{a}{2} + \frac{1}{2} \right) \cdot \frac{N}{v_2} \tan \beta\}
\]

(8)

The grinding force \(F_a(a_p=0.01) \) will be maintained in the whole grinding process, by this way, it can achieve controlled-force grinding. Different grinding depth \(h \) can correspond to different grinding feed \(a_p \), and we can know the relationship between grinding depth \(h \) and grinding feed \(a_p \) from Eqs.(7) and (8).
VI. ANALYSIS OF THE TOTAL FEED OF WHEEL

The total feed \(f_a \) can be found from the formula when spring grinding:

\[
f_a = a_p + f'_a \tag{9}
\]

Where \(a_p \) is grinding feed; \(f'_a \) is compensated feed which aims at overcome spring elastic potential energy.

Because spring has certain elasticity, wheel must produce enough positive pressure which applied on spring, by this way, abrasive grains with certain linear speed can cut spring metal matrix. Obviously, grinding feed \(a_p \) is based on compensated feed \(f'_a \). When spring is grinded with critical grinding thickness \(a_{\text{min}} \) of abrasive grains, the positive pressure between wheel and spring is defined as critical positive pressure. The critical grinding thickness \(a_{\text{min}} \) of abrasive grains can refer to table 1. [6]

<table>
<thead>
<tr>
<th>Material</th>
<th>(r_g)</th>
<th>(a_{\text{min}})</th>
<th>(k_s \cdot a_{\text{min}} / r_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardened carbon steel</td>
<td>6</td>
<td>1.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Cast-iron</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Annealing carbon steel</td>
<td>6</td>
<td>4</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Where \(r_g \) is the radius of micro blade of abrasive grains; \(k_s \) is a parameter which can characterize the cutting ability of material.

Grinding demand decides on selection of \(r_g \), different granularity can corresponding to different harshness. In general, we use alumina grains for wheel when spring end grinding, and the keenness of alumina grains can be shown by \(r_g \) and tip angle of abrasive grains \(\alpha \), as follow in table 2

<table>
<thead>
<tr>
<th>Granularity</th>
<th>46#</th>
<th>60#</th>
<th>80#</th>
<th>W40</th>
<th>W28</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_g/\mu m)</td>
<td>28</td>
<td>18</td>
<td>13</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>(\alpha/(^\circ))</td>
<td>110</td>
<td>108</td>
<td>106</td>
<td>98</td>
<td>90</td>
</tr>
</tbody>
</table>

When springs are grinded with critical grinding thickness of abrasive grains, the formula of grinding force:

\[
F_a = 9.81a_{\text{min}} \cdot \left\{ C_f \cdot \left[\frac{l}{a} - 1 \right] \sqrt{2al - l^2} + ab \arcsin \frac{l}{a} + \frac{1}{2} \sqrt{a} \right\} \cdot \frac{N}{v_2} \tan \beta
\]

\[
= 9.81r_g \cdot k_s \cdot \left\{ C_f \cdot \left[\frac{l}{a} - 1 \right] \sqrt{2al - l^2} + ab \arcsin \frac{l}{a} + \frac{1}{2} \sqrt{a} \right\} \cdot \frac{N}{v_2} \tan \beta
\]

\[
(10)
\]

Positive pressure from pressure spring should meet the formula:

\[
F_N = K \cdot a'_p = F'_a / N
\]

\[
f'_a = F'_a / (K \cdot N)
\]

Where \(FN \) is elasticity of single spring; \(K \) is spring stiffness; \(N \) is the number of spring.

The relationship between total feed and grinding can be found from Eqs.(7) . Esq.(9) and Eqs.(11), it plays an important guiding significance in spring end grinding and can vastly improve the grinding efficiency and grinding quality.

VII. CONCLUSIONS

1. The process of spring end grinding is analyzed and the feasibility of controlled-force grinding using for spring end grinding is proved. The grinding force formula by analyzing geometric model of spring grinding is introduced to ensure the power of grinding head motor. These theories are of great help in designing spring grinder and confirming technology.

2. The process of spring grinding must have a constant grinding force. As the grinding depth increase, grinding area will increase and grinding feed will decrease.

3. Spring is considered as an elastomer and the grinding feed can be divided into two parts: one is grinding feed and other is compensated feed. The former is built on the latter, so we must consider both feed in spring end grinding.

Thanks for the support from 2011 Zhejiang province key innovative team (advanced mold).

REFERENCES