On the matrix 3×3 exact solvable models of the type G_2

Č. Burdík 1, S. Pošta 1 and O. Navrátil 2

1 Department of Mathematics, Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 120 00 Prague 2, Czech Republic
E-mail: burdik@kmlinux.fjfi.cvut.cz, severin@km1.fjfi.cvut.cz

2 Department of Mathematics, Czech Technical University, Faculty of Transportation Sciences, Na Florenci 25, 110 00 Prague, Czech Republic
E-mail: navratil@fd.cvut.cz

This article is part of the Proceedings of the Baltic-Nordic Workshop, Algebra, Geometry and Mathematical Physics which was held in Tallinn, Estonia, during October 2005.

Abstract

We study the exact solvable 3×3 matrix model of the type G_2. We apply the construction similar to that one, which give the 2×2 matrix model. But in the studied case the construction does not give symmetric matrix potential. We conceive that the exact solvable 3×3 matrix potential model of the type G_2 does not exist.

PACS: 02.30.Ik;02.30.Jr

1 Introduction

In this note we continue in the study of the matrix exact solvable models [1]. We discuss the 3×3 matrix model of the type G_2 of the Calogero model [2]. For a comprehensive review of these systems connected with different root systems see [3].

We applied the method developed in [4] to the 2×2 matrix models of the type A_2 [4], BC_2 [5] and G_2 type in [6] and to the matrix 3×3 models of the type A_2 [4] and BC_2 [6]. Some general results for $N \times N$ matrix models of the type A_2 was obtained in [7]. It is shown that the method and especially the simplification used for 2×2 matrix models or 3×3 matrix models of the A_2 and BC_2 do not gives the symmetric 3×3 model of the G_2 type.

This is a reason for our conjecture that the exact solvable 3×3 matrix model of the type G_2 does not exist.
2 General construction

Let us consider the differential operator

\[\mathbf{H} = \eta^{ik} \partial_{ik} - \mathbf{U}, \tag{2.1} \]

where \(\eta^{ik} \) is symmetric constant matrix, \(\partial_{ik} = \frac{\partial}{\partial x_k} \) and \(\mathbf{U} \) is matrix function of the type \(N \times N \). The aim of our general construction is to find operator (2.1), which leads after transformation

\[\hat{\mathbf{H}} = \mathbf{G}^{-1} \mathbf{H} \mathbf{G}, \]

where \(\mathbf{G} \) is a regular matrix function, and change of variables \(y_r = y_r(x_k) \) to the differential operator

\[\hat{\mathbf{H}} = g^{rs}(y) \partial_{rs} + 2b^r(y) \partial_y + \mathbf{V}(y), \tag{2.2} \]

for which we know finite dimensional invariant spaces. In the paper [4] are shown the conditions, which the matrix functions \(b^r \) and \(\mathbf{V} \) have to fulfill, and construction of the operator (2.1) by means of this functions. We briefly remind these conditions.

If we write

\[\partial_k \mathbf{G} = \mathbf{GX}_k(x) \quad \text{or} \quad \partial_r \mathbf{G} = \mathbf{GY}_r(y), \tag{2.3} \]

the matrix functions \(\mathbf{X}_k(x) \) or \(\mathbf{Y}_r(y) \) must fulfil the compatibility conditions

\[\partial_k \mathbf{X}_i - \partial_i \mathbf{X}_k = [\mathbf{X}_i \mathbf{X}_k] \quad \text{or} \quad \partial_s \mathbf{Y}_r - \partial_r \mathbf{Y}_s = [\mathbf{Y}_r \mathbf{Y}_s]. \tag{2.4} \]

The matrix functions \(b^r \) and \(\mathbf{Y}_r \) are connected by the relation

\[b^r = g^{rs} \mathbf{Y}_s - \frac{1}{2} \Gamma^r, \]

where we denote

\[\Gamma^r = g^{st} \Gamma^r_{st}, \quad \Gamma^r_{st} = g^{rk} \Gamma^r_{st,k}, \quad \text{and} \quad \Gamma^r_{st,k} = \frac{1}{2} (-\partial_k g_{st} + \partial_s g_{tk} + \partial_t g_{sk}), \]

and \(g_{rs} \) is inverse of the \(g^{rs} \).

If we denote \(b_r = g_{rs} b^s \) and introduce

\[T_r = \frac{1}{N} \text{Tr} b_r, \quad \hat{b}_r = b_r - T_r, \]

we can rewrite the compatibility conditions (2.4) in the form

\[\partial_s (T_r + \frac{1}{2} \Gamma_r) - \partial_r (T_s + \frac{1}{2} \Gamma_s) = 0 \tag{2.5} \]

\[\partial_s \hat{b}_r - \partial_r \hat{b}_s = [\hat{b}_r, \hat{b}_s]. \tag{2.6} \]

From the equation (2.5) follows that exist function \(F(y) \) such that

\[\partial_r F = T_r + \frac{1}{2} \Gamma_r. \tag{2.7} \]

Denoting \(\mathbf{G} = e^F \hat{\mathbf{G}} \) we can write the equation (2.3) in the form

\[\partial_r \hat{\mathbf{G}} = \hat{\mathbf{G}} \hat{b}_r. \tag{2.8} \]
If the \(\hat{G}_0 \) is solution of the equation (2.8) and \(G_0 = e^{\xi} \hat{G}_0 \), the matrix potential \(U_0(x) \) corresponding to the matrix functions \(G_0(x) \) and \(V \) can be find from relation

\[
U_0 = \left(\eta^{ik} \partial_{ik} G_0(x) - G_0(x)V \right) G_0^{-1}(x).
\]

As the equation (2.8) is linear their general solution can be written in the form \(\hat{G} = C \hat{G}_0 \), where \(C \) is constant matrix. The potential \(U(x) \) corresponding to such solution of (2.8) is

\[
U(x) = C U_0(x) C^{-1}.
\]

Therefore we choose matrix functions \(b^r(y), V(y) \) and constant regular matrix \(C \) to the matrix potential (2.10) be symmetric.

3 Models of the \(G_2 \) type

We will consider matrix models with\(^1\)

\[
\eta^{11} = \eta^{22} = \frac{2}{3}, \quad \eta^{12} = \eta^{21} = -\frac{1}{3}
\]

and transformation

\[
y_1 = -x_1^2 - x_1x_2 - x_2^2, \quad y_2 = -x_1x_2(x_1 + x_2).
\]

In this case we obtain

\[
g^{11} = -2y_1, \quad g^{12} = g^{21} = -3y_2, \quad g^{22} = \frac{2}{3} y_1^2.
\]

(3.1)

It is easy to see that the differential operator \(g^{rs} \partial_{rs} \) has invariant subspaces of two type: \(V_N^{(1)} \) spaces of polynomials generated by \(y_1^n y_2^{n_2} \), where \(n_1 + n_2 \leq N \) and \(V_N^{(2)} \) spaces of polynomials generated by \(y_1^n y_2^{2n_2} \), where \(n_1 + 2n_2 \leq N \). In the scalar case the choose of the invariant spaces \(V_N^{(1)} \) leads to the models of the \(A_2 \) type and the choose invariant spaces \(V_N^{(2)} \) to the models of the \(G_2 \) type. Matrix model of the \(A_2 \) type we study in [4]. In this paper we will study the matrix models of type \(G_2 \), i.e. we will consider invariant subspaces \(V_N^{(2)} \).

Therefore we choose matrix functions \(b^r(y) \) in the form

\[
b^1 = C_0^1 + C_1^1, \quad b^2 = C_0^2 + C_1^2 \eta_2 + y_2^{-1} (C_0^1 y_1 + C_1^2 y_1^2)
\]

and \(V \) as a constant matrix.

In this case the compatibility conditions (2.4) are

\[
\begin{align*}
[C_1^1, C_2^2] &= 0, \quad & [C_1^1, C_2^3] &= 0, \\
[C_0^1, C_2^2] + [C_1^1, C_2^2] &= 0, \quad & [C_0^1, C_2^3] &= -3C_1^2 + 2C_3^2, \\
[C_0^1, C_1^2] + [C_1^1, C_0^2] &= -2C_2^2, \quad & [C_0^1, C_0^2] &= -4C_0^2.
\end{align*}
\]

(3.2)

\(^1\)This \(\eta^{ik} \) is connected with Laplace operator in three dimension in center of mass coordinates.
In the case of 2×2 matrix model [6] we were successful with solution of the system (3.2), where we put $C^1_0 = 0$. Therefore we choose $C^1_1 = 0$ in case 3×3 matrix, too. With this choose the conditions (3.2) gives

$$[C^1_0, C^2_0] = 0, \quad [C^1_0, C^3_0] = 2C^2_3, \quad [C^1_1, C^3_1] = -2C^2_1, \quad [C^1_0, C^3_0] = -4C^2_0. \quad (3.3)$$

It seems to sensible to chose the traceless matrix \hat{C}^1_0 in the (3.3) as diagonal. We will study two cases:

a) $\hat{C}^1_0 = A(e_{11} - e_{33})$ and

b) $\hat{C}^1_0 = A(e_{11} - 2e_{22} + e_{33})$,

where A is a constant and e_{rs} are 3×3 matrices $(e_{rs})_{ik} = \delta_{ri}\delta_{sk}$.

3.1 Solution in the case a)

In the case a) the general solution of (3.3) is

$$C^1_0 = -3\mu - 3\nu - 1 + 2(e_{11} - e_{33}), \quad C^1_1 = -2\omega,$$

$$C^2_0 = A^2_0 e_{31}, \quad C^2_1 = A^2_1 e_{21} + B^2_1 e_{32},$$

$$C^2_2 = 2A^2_1 e_{11} - e_{22} + B^2_2 e_{22} - e_{33}, \quad C^3_2 = -3\omega + A^3_0 e_{12} + B^3_0 e_{32} + B^3_2 e_{23}$$

or for traceless matrices \hat{C}^r_0

$$\hat{C}^1_0 = 2(e_{11} - e_{33}), \quad \hat{C}^1_1 = 0,$$

$$\hat{C}^2_0 = A^0_0 e_{31}, \quad \hat{C}^2_1 = A^2_1 e_{21} + B^2_1 e_{32},$$

$$\hat{C}^2_2 = A^2_1 e_{11} - e_{22} + B^2_2 e_{22} - e_{33}, \quad \hat{C}^3_2 = A^3_0 e_{12} + B e_{23}$$

The system of equations (2.8) is in this case equivalent to three systems of equations

$$
(4y_1^3 + 27y_2^2)\partial_1 X = -(4 + 9A^2_1)Y_1 X - 9A^3_0 Y_1 Z - 9A^2_0 Z
$$

$$
(4y_1^3 + 27y_2^2)\partial_1 Y = 9A^2_0 Y_1 X + 9(A^2_0 - B^2_0)Y_1 Y - 9B^2_0 Y_1 Z
$$

$$
(4y_1^3 + 27y_2^2)\partial_1 Z = -9B^2_0 Y_1 Y + (4 + 9B^2_0)Y_1 Z
$$

$$
y_2(4y_1^3 + 27y_2^2)\partial_2 X = -6(3y_2^2 + A^2_0 Y_1)X + 6A^3_0 Y_1 Y + 6A^2_0 Y_1 Z
$$

$$
y_2(4y_1^3 + 27y_2^2)\partial_2 Y = 6A^3_0 Y_1 Y + 6(A^2_0 - B^2_0)Y_1 Y + 6B^2_0 Y_1 Z
$$

$$
y_2(4y_1^3 + 27y_2^2)\partial_2 Z = 6B^2_0 Y_1 Y + 6(3y_2^2 - B^2_0 Y_1) Z
$$

where $X = \hat{G}_{k1}$, $Y = \hat{G}_{k2}$ and $Z = \hat{G}_{k3}$, $k = 1, 2, 3$.

It is easy to see that from the system (3.5) follow

$$2y_1\partial_1 X + 3y_2\partial_2 X = -2X, \quad 2y_1\partial_1 Y + 3y_2\partial_2 Y = 0, \quad 2y_1\partial_1 Z + 3y_2\partial_2 Z = 2Z,$$

which gives

$$X = y_1^{-1} F(t), \quad Y = G(t), \quad Z = y_1 H(t), \quad \frac{y_2}{y_1^3}.$$
The functions F, G and H then fulfill the system of equations

\[
\begin{align*}
(t + 27t)F' &= 3(A_2^2 - 3t)F + 3A_2^2G + 3A_2^3H, \\
(t + 27t)G' &= 3A_2^2TF - 3(A_2^2 - B_2^2)G + 3B_2^2H, \\
(t + 27t)H' &= 3B_2^2tG - 3(B_2^2 - 3t)H.
\end{align*}
\]

To find three independent solution of system (3.6) we choose with analogy of 2×2 matrix model special value of constants A_s^r and B_s^r, which essentially simplify the system (3.6).

If we chose

\[
A_0^2 = \frac{4}{\pi}, \quad A_1^2 = -\frac{16}{\pi}, \quad A_2^2 = -\frac{4}{\pi}, \quad A_3^2 = -3, \\
B_0^2 = \frac{4}{\pi}, \quad B_2^2 = -\frac{8}{\pi}, \quad B_3^2 = -6,
\]

three independent solution of the system (3.6) are

\[
\begin{align*}
F_1 &= G_1 = H_1 = \frac{t^{2/3}}{4 + 27t}, \\
F_2 &= G_2 = \frac{4t^{1/3}}{4 + 27t}, \quad H_2 = -\frac{27t^{4/3}}{4 + 27t}; \\
F_3 &= \frac{4(8t + 4)}{t(4 + 27t)}, \quad G_3 = \frac{27(4 - 27t)}{4 + 27t}, \quad H_3 = -\frac{1458t}{4 + 27t}.
\end{align*}
\]

In our case the function e^F is

\[
e^F = \left((x_1 - x_2)(2x_1 + x_2)(x_1 + 2x_2)\right)^{\nu} \left(x_1 x_2(x_1 + x_2)\right)^{\nu} e^{-\omega(x_1^2 + x_2^2)},
\]

which gives matrix $G_0(x)$. By direct calculation it is possible to show that corresponding matrix potential U_0 can not be symmetrize by any choose of constant matrices V and C.

3.2 Solution in the case b)

In this case the general solution of (3.3) is

\[
\begin{align*}
C_0^1 &= -3\mu - 3\nu - 1 + \frac{2}{3} (e_{11} - 2e_{22} + e_{33}), \\
C_1^1 &= -2\omega, \\
C_2^0 &= 0, \\
C_1^2 &= A_2^0 e_{21} + B_2^0 e_{23}, \\
C_2^2 &= \frac{2}{3} \nu + \alpha (e_{11} - e_{22}) + \beta (e_{22} - e_{33}) + A_2^0 e_{13} + B_2^0 e_{31}, \\
C_3^0 &= -3\omega + A_3^2 e_{12} + B_3^2 e_{32}
\end{align*}
\]

or for traceless matrices C^r_s

\[
\begin{align*}
\tilde{C}_0^1 &= \frac{2}{3} (e_{11} - 2e_{22} + e_{33}), \\
\tilde{C}_1^1 &= 0, \\
\tilde{C}_2^0 &= 0, \\
\tilde{C}_1^2 &= A_2^0 e_{21} + B_2^0 e_{23}, \\
\tilde{C}_2^2 &= \alpha (e_{11} - e_{22}) + \beta (e_{22} - e_{33}) + A_2^0 e_{13} + B_2^0 e_{31}, \\
\tilde{C}_3^0 &= A_3^2 e_{12} + B_3^2 e_{32}
\end{align*}
\]

\(^2\)In the other case in the solution of (3.6) appear hypergeometric functions.
To solve the system (2.8) we have to find three independent solutions of the system

\[
\begin{align*}
(4y_1^3 + 27y_2^2)\partial_1 X &= -\frac{1}{3} (4 + 27\alpha) y_1^2 X - 9A_1^2 y_1 Y - 9B_2^2 y_1^2 Z \\
(4y_1^3 + 27y_2^2)\partial_4 Y &= -9A_2^2 y_1^2 X + \frac{1}{3} (8 + 27\alpha - 27\beta) y_1^2 Y - 9B_2^2 y_1^2 Z \\
(4y_1^3 + 27y_2^2)\partial_1 Z &= -9A_2^2 y_1^2 X - 9B_1^2 y_1 Y - \frac{1}{3} (4 - 27\beta) y_1^2 Z \\
y_2(4y_1^3 + 27y_2^2)\partial_2 X &= -6(y_2^2 - \alpha y_1^2) X + 6A_1^2 y_1^2 Y + 6B_2^2 y_1^2 Z \\
y_2(4y_1^3 + 27y_2^2)\partial_2 Y &= 6A_2^2 y_1^2 X + 6(2y_2^2 - (\alpha - \beta)y_1^2) Y + 6B_2^2 y_1^2 Z \\
y_2(4y_1^3 + 27y_2^2)\partial_1 Z &= 6A_2^2 y_1^2 X + 6B_1^2 y_1^2 Y - 6(y_2^2 + \beta y_1^2) Z \\
\end{align*}
\]

(3.10)

From the system (3.10) we obtain relations

\[
\begin{align*}
6y_1\partial_1 X + 9y_2\partial_2 X &= -2X, \\
6y_1\partial_1 Y + 9y_2\partial_2 Y &= 4Y, \\
6y_1\partial_1 Z + 9y_2\partial_2 Z &= -2Z,
\end{align*}
\]

from which follow

\[
X = y_1^{-1/3} F(t), \quad Y = y_1^{2/3} G(t), \quad Z = y_1^{-1/3} H(t), \quad t = \frac{y_2}{y_1}.
\]

Functions \(F(t), \ G(t) \) and \(H(t) \) fulfill system differential equations

\[
\begin{align*}
t(4 + 27t)F' &= 3(\alpha - t)F + 3A_1^2G + 3B_2^2H \\
t(4 + 27t)G' &= 3A_2^2tF - 3(\alpha - \beta - 2t)G + 3B_2^2tH \\
t(4 + 27t)H' &= 3A_2^2F + 3B_2^2G - 3(\beta + t)H \\
\end{align*}
\]

(3.11)

To solve (3.11) we again choose convenient constants.

First possibility is to choose

\[
A_1^2 = \frac{8}{9}, \quad A_2^2 = \frac{10}{9} (1 + p), \quad A_3^2 = -3, \\
B_1^2 = \frac{10}{9} (1 - p), \quad B_2^2 = 0, \quad B_3^2 = 0,
\]

(3.12)

In this case we have

\[
\begin{align*}
F_1 &= G_1 = H_1 = \frac{t^{7/9}}{(4 + 27t)^{8/9}} \\
F_2 &= G_2 = 0, \quad H_2 = \frac{(4 + 27t)^{7/9}}{t^{8/9}} \\
F_3 &= \frac{4t^{1/9}}{(4 + 27t)^{8/9}}, \quad G_3 = -\frac{27t^{10/9}}{(4 + 27t)^{8/9}} \quad H_3 = \frac{4 - 20p + 135(1 - p)t}{27t^{8/9}(4 + 27t)^{8/9}}.
\end{align*}
\]

(3.13)

The second possibility is to choose

\[
A_1^2 = -\frac{8}{3}, \quad A_2^2 = -\frac{2}{3} (1 + p), \quad A_3^2 = -3, \\
B_1^2 = -\frac{2}{3} (1 - p), \quad B_2^2 = 0, \quad B_3^2 = 0, \\
\alpha = \frac{4}{3}, \quad \beta = 0
\]

(3.14)
and three solutions of (3.11) are

\[F_1 = G_1 = H_1 = \frac{(4 + 27t)^{8/9}}{t}, \]
\[F_2 = G_2 = 0, \quad H_2 = \frac{1}{(4 + 27t)^{1/9}}, \]
\[F_3 = \frac{4(4 + 45t)}{t(4 + 27t)^{7/9}}, \quad G_3 = \frac{16 + 180t + 405t^2}{t(4 + 27t)^{7/9}}, \quad H_3 = \frac{16 + 45(1 - p)t}{t(4 + 27t)^{7/9}}. \]

In the third case we choose

\[A_1^2 = -\frac{4}{27}, \quad A_2^2 = -\frac{10}{27} (1 + p), \quad A_3^2 = -3, \]
\[B_1^2 = -\frac{40}{27} (1 - p), \quad B_2^2 = 0, \quad B_3^2 = 0, \]
\[\alpha = \frac{4}{27}, \quad \beta = -\frac{28}{27} \]

and independent solutions of (3.11) are

\[F_1 = G_1 = H_1 = \frac{(4 + 27t)^{7/9}}{t^{8/9}}, \]
\[F_2 = G_2 = 0, \quad H_2 = \frac{t^{7/9}}{(4 + 27t)^{8/9}}, \]
\[F_3 = \frac{2(4 + 27t)^{1/9}}{t^{8/9}}, \quad G_3 = \frac{(4 + 27t)^{1/9}(9t + 2)}{t^{8/9}}, \quad H_3 = \frac{8 + 45(1 - p)t}{t^{8/9}(4 + 27t)^{8/9}}. \]

In the last interesting case the constants are

\[A_1^2 = \frac{28}{27}, \quad A_2^2 = \frac{7}{27} (1 + p), \quad A_3^2 = -3, \]
\[B_1^2 = \frac{2}{3} (1 - p), \quad B_2^2 = 0, \quad B_3^2 = 0, \]
\[\alpha = -\frac{28}{27}, \quad \beta = \frac{1}{27} \]

and in this case the three independent solutions are, e.g.

\[F_1 = G_1 = H_1 = \frac{t^{8/9}}{4 + 27t}, \]
\[F_2 = G_2 = 0, \quad H_2 = t^{-1/9}, \]
\[F_3 = \frac{2(8 + 135t)}{3t^{7/9}(4 + 27t)}, \quad G_3 = \frac{9t^{2/9}(2 - 27t)}{4 + 27t}, \quad H_3 = \frac{4(1 + p) - 27(1 - p)t}{t^{7/9}(4 + 27t)}. \]

The function \(e^F \) is in all discussed case given by relation (3.8).

4 Potential

To compute the corresponding potential we first use formulae (2.9).

The most interesting choose of the constant matrix \(V \) is

\[V = -2\omega(3\mu + 3\nu + 1) + \frac{1}{3} \omega(e_{11} - 2e_{22} + e_{33}) + Ae_{12} + Be_{32}, \]

where \(A \) and \(B \) are suitable constants. The other choose of the matrix \(V \) leads to the matrix function in the potential, which must be symmetrize simultaneously with the following matrix potential.
With this choice we obtain by direct computation

\[
U_0 = \left(\eta^{ik} \partial_k G_0(x) \right) - G_0 V \right) G_0^{-1} = U_0^{(s)} + U_0^{(m)},
\]

where

\[
U_0^{(s)} = 2\omega^2 (x_1^2 + x_1 x_2 + x_2^2) + \\
+ 2(\mu^2 - \mu + \frac{5}{3}) \left(\frac{1}{(x_1 - x_2)^2} + \frac{1}{(2x_1 + x_2)^2} + \frac{1}{(x_1 + x_2)^2} \right) + \\
+ \frac{2}{9} (\nu^2 - \nu + \frac{152}{27}) \left(\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{(x_1 + x_2)^2} \right)
\]

and \(U_0^{(m)}\) is the traceless part of the potential, which is given as follows

\[
U_{11}^{(m)} = \frac{-12\mu(x_1^2 + x_1 x_2 + x_2^2)^2}{(x_1 - x_2)^4(2x_1 + x_2)^4(x_1 + 2x_2)^4} \\
\times \left(16x_1^6 + 48x_1^5 x_2 + 69x_1^4 x_2^2 + 58x_1^3 x_2^3 + 69x_1^2 x_2^4 + 48x_1 x_2^5 + 16x_2^6 \right) + \\
\times \left(46x_1^5 + 24x_1^4 x_2 - 87x_1^3 x_2^2 - 214x_1^2 x_2^3 - 87x_1 x_2^4 + 24x_2^5 + 8x_2^6 \right) + \\
\times \left(\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{(x_1 + x_2)^2} \right) + \\
\times \left(2(6\nu + A + B)(x_1^2 + x_1 x_2 + x_2^2)^2 \right) \\
\times \left((x_1 - x_2)^4(2x_1 + x_2)^4(x_1 + 2x_2)^4 \right) \\
\times \left(8x_1^6 + 24x_1^5 x_2 - 87x_1^4 x_2^2 - 214x_1^3 x_2^3 - 87x_1^2 x_2^4 + 24x_1 x_2^5 + 8x_2^6 \right) + \\
+ \frac{8}{9} \left(x_1^2 + x_1 x_2 + x_2^2 \right) \times \\
\times \left(94x_1^6 + 282x_1^5 x_2 - 111x_1^4 x_2^2 - 692x_1^3 x_2^3 - 111x_1^2 x_2^4 + 282x_1 x_2^5 + 94x_2^6 \right)
\]

\[
U_{22}^{(m)} = \frac{-27}{4\pi} \left(\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{(x_1 + x_2)^2} \right) - \\
- \frac{1}{4\pi} (B(3p + 7) + 48) \left(\frac{1}{(x_1 - x_2)^2} + \frac{1}{(2x_1 + x_2)^2} + \frac{1}{(x_1 + 2x_2)^2} \right)
\]

\[
U_{33}^{(m)} = -U_{11}^{(m)} - U_{22}^{(m)}
\]

\[
U_{12}^{(m)} = - \frac{3(p + 7)(6\mu + 6\nu + A + B + \frac{2}{3}) x_1^2 x_2^2 (x_1 + x_2)^2 x_1^2 + x_1 x_2 + x_2^2}{(x_1 - x_2)^4(2x_1 + x_2)^4(x_1 + 2x_2)^4}
\]

\[
U_{13}^{(m)} = - \frac{3(6\mu + 6\nu + A + B + \frac{2}{3}) x_1 x_2 (x_1 + x_2)^2}{(x_1 - x_2)^4(2x_1 + x_2)^4(x_1 + 2x_2)^4}
\]

\[
U_{23}^{(m)} = - \frac{3B(x_1 x_2 (x_1 + x_2))^4}{(x_1 - x_2)^2(2x_1 + x_2)^2(x_1 + 2x_2)^2}
\]

\[
U_{21}^{(m)} = \frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{(x_1 + x_2)^2} - \\
- 18B \left(\frac{1}{(x_1 - x_2)^2} + \frac{1}{(2x_1 + x_2)^2} + \frac{1}{(x_1 + 2x_2)^2} \right)
\]
On the matrix 3×3 exact solvable models of the type G_2
\begin{equation}
+ \frac{8}{3} \left(38x_1^{12} + 228x_1^{11}x_2 + 411x_1^{10}x_2^2 - 35x_1^9x_2^3 - 639x_1^8x_2^4 + 162x_1^7x_2^5 + 1128x_1^6x_2^6 + 162x_1^5x_2^7 - 639x_1^4x_2^8 - 35x_1^3x_2^9 + 411x_1^2x_2^{10} + 228x_1x_2^{11} + 38x_2^{12} \right) - \\
- \frac{2}{3} A(x_1^2 + x_1x_2 + x_2^2)^3 \left(8x_1^6 + 24x_1^5x_2 - 87x_1^4x_2^2 - 214x_1^3x_2^3 - 87x_1^2x_2^4 + 24x_1x_2^5 + 8x_2^6 \right) + \\
+B(x_1^2 + x_1x_2 + x_2^2)^3 \left(4x_1^6 + 12x_1^5x_2 + 51x_1^4x_2^2 + 82x_1^3x_2^3 + 12x_1^2x_2^4 + 4x_1x_2^5 + 4x_2^6 + 4px_1^6 + 12px_1^5x_2 - 3px_1^4x_2^2 - 26px_1^3x_2^3 - 3px_1^2x_2^4 + 12px_1x_2^5 + 4px_2^6 \right)
\end{equation}

Acknowledgements

The research was supported by GACR 201/05/0857 and the project LC06002 of the Ministry of Education.

References