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Abstract
Cyber threats are a showstopper for Internet of Things (IoT) has recently been used at an industrial
scale. Network layer attacks on IoT can cause significant disruptions and loss of information. Among
such attacks, routing attacks are especially hard to defend against because of the ad-hoc nature of IoT
systems and resource constraints of IoT devices. Hence, an efficient approach for detecting and predicting
IoT attacks is needed. Systems confidentiality, integrity and availability depends on continuous security
and robustness against routing attacks. We propose a deep-learning based machine learning method for
detection of routing attacks for IoT. In our study, the Cooja IoT simulator has been utilized for generation
of high-fidelity attack data, within IoT networks ranging from 10 to 1000 nodes. We propose a highly
scalable, deep-learning based attack detection methodology for detection of IoT routing attacks which are
decreased rank, hello-flood and version number modification attacks, with high accuracy and precision.
Application of deep learning for cyber-security in IoT requires the availability of substantial IoT attack
data and we believe that the IoT attack dataset produced in this work can be utilized for further research.

Keywords: deep learning, continuous monitoring, cyber-physical systems, cyber security.

1. Introduction

The term of Internet of Things (IoT) is a system of in-
terconnected devices, machines and related software
services. IoT plays an important role in the modern
society since it enables energy efficient automation
for enhancing quality of life. However IoT systems
are an obvious target for cyber-attacks because of

their ad-hoc and resource-constrained nature. There-
fore, continuous monitoring and analysis are needed
for securing IoT systems. For the security monitor-
ing and analysis of IoT, forecasting malicious attacks
is crucial to adapt with unexpected conditions, take
precautions, protect sensitive data, provide continu-
ity and minimize possible losses. Because of the
vast amount of network and sensing data produced
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by IoT devices and systems, Big Data and machine 
learning methods are highly effective in continuous 
monitoring and analysis for security of IoT systems. 

In this study we propose a highly-scalable deep-
learning based attack detection method for routing 
attacks in realistic IoT scenarios. We obtained a high 
degree of training accuracy (up to 99.5%) and F1-
scores (up to 99%). In this study, we have focused 
on specific I oT r outing a ttacks, n amely, decreased 
rank, version number modification and hello-flood. 
We have generated an IoT Routing Attack Dataset, 
named IRAD, with size close to 64x106 which allows 
for successful deep-learning based attack detection 
in IoT.
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Fig. 1. An overview of IoT attacks

Traditional machine learning methods, such as
Bayesian Belief Networks (BBN)1, Support Vector
Machines (SVM)2,3,4,5 and others6,7,8,9 have been ap-
plied for cyber security. However, IoT systems gen-
erate a large size of data, and the classical machine
learning methods tend to decrease in performance
and scalability when the data size gets larger. In
contrast, deep learning based machine learning per-
forms better when trained with large data sizes and
is adaptable to different attack scenarios, since deep
learning can derive features from initially provided
features (sometimes also called meta-features).

IPv6 is a commonly used protocol in IoT and IPv6
based wireless sensor networks (WSNs)10 are partic-
ularly susceptible to routing attacks. IPv6 over Low-
powered Wireless Personal Area Networks (6LoW-

PAN) is an IPv6 based WSN protocol11. 6LoWPAN
has some advantages such as low power consump-
tion, tiny, small foot print, inexpensive structure and
easy maintenance12. Besides, WSNs include many
sensors which have limited resources such as low
memory, small bandwidth and low energy. A de-
piction of routing attacks against IoT systems can be
found in Figure 1.

Fig. 2. Methodology Flow Diagram

In this study the viability of the proposedmethod-
ology has been validated by using up to 1000
nodes. Existing studies13,14,15 have demostrated their
methodology using a small number of nodes (10-50),
which is not a realistic approach for a real IoT envi-
ronment.

Our proposed methodology is depicted in Fig-
ure 2. We have generated data by real-life equiva-
lent simulations using the open source Contiki/Cooja
simulator 16, because of lack of availability of public
IoT attack data sets. The Cooja simulation generates
raw packet capture (PCAP) files, which are first con-
verted into Comma Separated Values (CSV) files for
text-based processing. The CSV files are then fed
into the feature pre-processing module of our sys-
tem. The features are calculated based on the traffic
flow information in the CSV files. First, a feature
extraction process takes place. Thereafter, feature
normalization is applied to all datasets to reduce the
negative effects ofmarginal values. In the pre-feature
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Table 1. Details of Datasets

Malicious Benign

Datasets Scenarios Nodes Mal./Ben. Nodes Total Packets Scenario Nodes Total Packets

Decreased Rank

DR10 10 2/8 130.240 Benign10 10 121,047
DR20 20 4/16 398,143 Benign20 20 120,897
DR100 100 10/90 456,816 Benign100 100 150,078
DR1000 1000 100/900 801,396 Benign1000 1000 739,845

Hello Flood

HF10 10 2/8 100,538 Benign10 10 121,047
HF20 20 4/16 104,302 Benign20 20 120,897
HF100 100 10/90 300,986 Benign100 100 150,078
HF1000 1000 100/900 1,739,226 Benign1000 1000 739,845

Version Number

VN10 10 2/8 112,044 Benign10 10 121,047
VN20 20 4/16 203,153 Benign20 20 120,897
VN100 100 10/90 223,275 Benign100 100 150,078
VN1000 1000 100/900 1,585,075 Benign1000 1000 739,845

selection step, as a result of feature importance anal-
ysis, some of the features are dropped.

After feature pre-processing, the datasets corre-
sponding to each scenario are labelled and mixed.
As a result, preprocessed dataset is produced, con-
sisting of a mixture of attack and benign data. These
datasets are fed into deep learning algorithm. Deep
layers are trained with regularization and dropout
mechanisms, their weights are adjusted and the IoT
Attack Detection Models are created.

IoT devices are resource constrained and have
power consumption limitations. As a result of these
constraints the security mechanisms devised for IoT
should be efficient and lightweight, putting ver small
computation and communication burden on the end-
devices as possible. Our proposal puts minimum
burden on the IoT network since it requires only the
network packet traces for detection and prediction of
attacks which can be collected externally by network
recording equipment or specially designated nodes.
According to the best our knowledge, this is the first
study which uses deep learning based methodology
for routing attack detection in IoT network.

Deep learning requires significant amount of data
for efficient training. In this research area, lack of
datasets is one of the biggest challenges. So we sim-
ulated the routing attacks within different scenarios
and processed raw datasets to make them ready for
detection process. Finally we concatenate the same
attack datasets to make a comprehensive dataset.
Thus, three IoT attack datasets were obtained. The
details of mentioned scenarios and datasets are listed

in Table 1.
The rest of the paper is organized as follows: Sec-

tion 2 presents related work about IoT attack detec-
tion by using different approaches. Section 3 gives
detailed information about this research: RoutingAt-
tacks and Features for Deep Learning, Simulation of
IoT Attacks, Dataset Generation and Feature Extrac-
tion, Feature Normalization, Feature Selection and
Deep Learning. In Section 4, results and analysis of
the research are given. Discussion and Conclusions
are given in Section 5.

2. Related Work

Designing and ensuring sustainability of secure IoT
systems the best way is to protect against malicious
attacks before they happen. At this point, detecting
and if possible, predicting malicious attacks come
into prominence to protect the IoT systems against at-
tacks. There are two alternative approaches for attack
detection; rule-based (or signature-based) approach
and predictive (or behavioural) approach. Signature
based solutions fail against routing attacks that have
changed their nature slightly. The anomaly detection
methods are better than signature based solutions for
the detection accuracy of previously unseen attacks.

There are several studies on routing protocol at-
tack detection for IoT using the rule-based approach.
In research of Raza et al. 17, node IDs and ranks are
checked to matching assigned values for detecting
anomalies. If a malicious node is detected, an alarm
is raised. However rule-based detection isn’t effi-
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cient for complex systems and unidentified attacks
because many rules are required which brings man-
agement difficulty of rules. Additionally, since rules
are derived from pre-determined system configura-
tions and known attacks, new rules need to be added
to deal with new type of attacks.

Avram et al. 18 aim to detect routing attacks by
using Self Organizing Maps (SOM) algorithm. For
the AODV routing protocol, they created scenarios,
benign and mixed, to calculate the proposed sys-
tem accuracy. Their algorithm detects some routing
attacks with high accuracy, nevertheless the study
suffers from a high false positive rate (9.5%).

Banković et al. 15, researchers aim to detect un-
known attack inWSN. In the centralized routing tree,
there are some PDA-like sensors, that have more
power resource and computational capacity to solve
node’s constraints issue. They aim to detect the Sybil
attack, a kind of routing attack that malicious nodes
try to impersonate from other nodes. Their proposed
algorithm has been tested on a 40-node WSN, gets
high detection rate until the percentage of malicious
nodes exceed 52%.

Pongle et al. 13 studied on detecting wormhole
attacks in IoT. Wormhole attack is topology based
routing attack that aim to affect network topology
and packet traffic flows. Their proposed IDS-based
detection system identify the wormhole attacks by
using node’s and neighbour’s location and also iden-
tify attacker node by using received signal strength.
They focus on RPL as the routing protocol and sim-
ulate the IoT network by using Cooja. Their network
topology has up to 24 nodes. The number of nodes
is not realistic for real IoT environment. Likewise,
Nait-Abdesselam et al. 14 proposed a rule-based de-
tection system. They use OLSR19, as routing proto-
col, and NS-2 simulator20 for creating network. In
the study of Nait-Abdesselam et al. 14, the number of
nodes is more than other studies13, as 10 to 50 nodes.

Dhamodharan et al. 21 aim to detect the Sybil at-
tack. In the Sybil attack, attacker temporarily uses
different (normal) node’s identity while communi-
cating with neighbour nodes. They create network,
that based on AODV protocol, by using NS-2 simu-
lator 20. Message authentication is applied to detect
Sybil nodes, as a rule-based solution.

The usage and efficiency of various Machine
Learning(ML) and data mining methods for intru-
sion detection is discussed by Buczak et al. 6. ML
result metrics (False Positive, False Negative etc.),
core ML methods (SVM, Bayesian, Decision Tree,
Clustering etc.), complexity of theMLmethods used
on public datasets and features of the datasets are dis-
cussed.

As an example of SVM, in the research of Chowd-
hury et al. 9, ten subsets of data set features are
created randomly by feature selection, where one
of the subsets contains three features. Then, these
feature subsets are input to the SVM algorithm re-
spectively. The authors claim to improve detection
accuracy from 88.03% to 98.76% as a result by us-
ing one of the feature subsets instead of using all
features.

Janakiram et al. 1 also applied BBN algorithm
to detect outliers in WSN but these studies has no
contribution about routing attacks.

There are some applications of SVM to IoT. SVM
is an supervised ML model for solving classification
and regression problems. The researchers proposed
outlier detection systems in WSN. However these
studies3,4,5,2 don’t address routing attacks.

In the study of Kaplantzis et al. 3, researchers
aim to build a simple classification based IDS to
detect selective-forwarding attacks. IDS generates
an alarm depending upon bandwidth and hop count
thresholds. The classification process is designed by
using SVM classifiers. Determined features, band-
width and hop count, can produce accurate results
for the blackhole attack, but for other routing attacks,
they are not as efficient.

Diro et al. 22, proposed deep learning based dis-
tributed attack detection for IoT. They also compare
the traditional machine learning with deep learn-
ing about performance of distributed attack detec-
tion. Distributed attack detection is done by fog
computing23 in this study. They also used NSL-
KDD24 dataset for detecting attacks. Although this
study is a promising approach for distributed deep
learning, but does not address IoT attacks specifi-
cally.
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3. Deep Learning Based Detection of Routing
Attacks

Diro et al. 22 stated in their research that deep learning
which involvesmultiple hidden neural network layers
has better performance than shallow learning, which
involves only one hidden neural network layer. Deep
learning performs better with larger data sizes and
since it is more adaptable to varying parameters in
the data. IoT systems produce large data sizes and the
attacks against IoT systems show varying character-
istics which are not easily detectable by linear mod-
els. In contrast, there are also some drawbacks such
as inclined to overfitting25 or distinctive solutions,
according to "no free lunch theorem"(NFLT)26, that
means a solution for specific problem is useless for
another problem. Nevertheless, deep learning is a
promising machine learning method for detection
and prevention of attacks against IoT systems.

In our methodology, first wireless traffic packet
capture files for various benign and attack scenarios
are generated using the Cooja simulator. Features
are extracted from the packet capture files based on
the characteristics of the IoT routing attacks. The
importance of the features are evaluated due to the
datasets’ index for selecting features to make the
learning process more accurate. The features with
too high and low importances are dropped in order to
help prevention of over-fitting and under-fitting dur-
ing training. The datasets are normalized by a feature
normalization process to make the training process
faster. The output of the feature pre-processing step
are pre-processed datasets which are taken into deep
learning algorithm. The learning algorithm is im-
plemented by the help of Python libraries such as
KERAS (available at: https://keras.io), Scikit27 and
Numpy28. The learning process outputs the IoT at-
tack detection model. We tested the model against
multiple test scenarios for a more accurate measure-
ment of precision and recall.

3.1. Simulation of IoT Attacks

In order to obtain a highly generalizable neural net-
work model, network communication data corre-
sponding to a variety of IoT scenarios, with andwith-
out malicious nodes, need to be obtained. For this

purpose, we utilized the Cooja IoT simulator to simu-
late different IoT network communication scenarios.
Cooja, coupled with the Contiki operating system, is
a cross-layer (application, operating system and ma-
chine code layer) simulation tool16. Sensors in the
simulated network run with the Contiki operating
system and implement the RPL protocol. Contiki
makes possible to load and unload individual pro-
grams and services to simulated sensors29. We have
conducted a simulation of each attack as mentioned
above, by running real sensor code in Cooja simu-
lator, in a virtual machine with 48 GB RAM and
8 VCPUs on a private cloud. We opted for using
the cloud infrastructure since simulations from 100
up to 1000 nodes require high memory and comput-
ing power. The Contiki environment includes 64-bit
Java Runtime Environment on top at 64-bit Ubuntu
operating system and Contiki 3.0. A sample of IoT
simulation is shown in Figure 3.

Root Node: 0
Normal Nodes: 1-21
Malicious Node: 22

Fig. 3. A sample of the Simulation

We built different network topologies for simu-
lating IoT routing attacks. We simulated these sce-
narios by the Cooja network simulation, at the same
time, avoiding to produce a synthetic dataset, since
Cooja enables to run actual RPL code on the sim-
ulated nodes. Cooja allows taking transmitted ra-
dio messages in the simulated network as a PCAP
file. Subsequently, we transform the PCAP file to
CSV with the help of our Python data preprocessing
library. After that, a feature extraction process is
applied to the generated CSV files.

 
___________________________________________________________________________________________________________

43

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 39-58



Table 2. A Sample of Raw Dataset
No. Time Source Destination Length Info
4755 14.611416 fe80::c30c:0:0:12 fe80::c30c:0:0:11 102 RPL Control (DODAG Information Object)
4756 14.611886 fe80::c30c:0:0:8 ff02::1a 97 RPL Control (DODAG Information Object)
4757 14.612891 fe80::c30c:0:0:4 fe80::c30c:0:0:18 76 RPL Control (Destination Advertisement Object)

After the scenarios were simulated, the datasets
were produced as PCAP files. We dissected the
PCAP file into CSV by using Wireshark and input to
pre-processing. A sample of raw dataset is shown in
Table 2.

3.2. Routing Attacks and Features for Deep
Learning

Routing Protocol for Low-Power and Lossy Net-
works (RPL)30 is a tree-oriented IPv6 routing pro-
tocol for 6LoWPAN. It creates Destination Ori-
ented Directed Acyclic Graphs (DODAGs), called
as DODAG tree. Each network has one or more
DODAG root node as central node and each network
has a unique identifier DODAG ID to be identified.
Additionally, each node has a rank number and a
routing table due to the other nodes’ rank numbers.
The rank number is used to determine the distance
between the node and root31.

Fig. 4. Sample 6LoWPAN Concept

In the RPL protocol, there are three type
of control packets; DODAG Information Object
(DIO), DestinationAdvertisementObject (DAO) and
DODAG Information Solicitation (DIS). DIO pack-
ets are first sent by base (or root) node as broadcast
packets to establish the DODAG tree. The rest of
the nodes receive the DIO packets and they create
their routing table by selecting their parent node.
They send DAO packets to the parent node, asking
permission to connect to the parent node. The par-
ent node accepts this offer by sending back a DIO
ACK packet. A new node sends DIS packets to join
the DODAG tree. If a new node joins the tree, all
nodes send DIO packet again to reform DODAG (or
network topology). An example of RPL network is
depicted in Figure 4.

Routing attacks take place at the network layer.
Among the most significant routing attacks are de-
creased rank (DR), hello-flood (HF) and version
number modification (VN) attacks.

Fig. 5. Decreased Rank Attack

The DR attack is a kind of traffic misappropria-
tion attack. In this kind of attack, malicious nodes
advertise a rank lower than the other nodes to their
neighbour nodes, by sending DIO packets. As a re-
sult, the neighbour nodes change their routing path to
include attacker node by sending DAO packets. DR
attack can be applied as a preparation for black hole,
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eavesdropping and sink hole attacks. DR attack is
depicted in Figure 5. In this figure, Node 1 is the
DODAG root node and the others are normal nodes.
The nodes, 3 to 8, are not effected by the attack.
Node 9 is the malicious node that conducts the DR
attack. Nodes 10 and 11 are partially affected from
the attack. Some of the packets originating from
these nodes could be received by the malicious node
because the malicious node is in their routing table,
i.e., the other nodes send their packets through the
malicious node. The nodes, 12 to 18, are the victim
nodes whose communication is transmitted over the
malicious node.

It is evident that number of received packets of the
malicious node increases when this attack happens.
We aim to use this anomaly as a feature. Accord-
ingly, Reception Rate (RR) (1), Reception Average
Time (RAT) (2), Received Packets Counts (RCP), To-
tal Reception Time(TRT) statitistics are calculated,
per transmission window (1000 ms). Additionally,
DIO and DAO packet counts are calculated because
of the the attack is carried over DIO and DAO pack-
ets.

RR =
Received Packet Count o f the Node

1000
(1)

RAT =
Total Reception Time

Received Packet Count o f the Node
(2)

Themain purpose of theHELLOmessage is to in-
troduce and integrate new nodes to the network. The
nodes broadcast HELLO messages with their own
metrics such as signal power and ID number. All
the other nodes create their own routing table to send
their messages. A malicious node sends HELLO
messages by DIS packets to its victims by strong
signal power and suitable routing metrics, appearing
like an neighbour node. The attacker node becomes
the most favorable node for the victims. This attack
is called the Hello-flood attack. The initialization
part of this attack is depicted in Figure 6.

The malicious node, Node 15, broadcasts
HELLO messages to Nodes 4-13, except Nodes 8
and 11. The victim nodes change their routing table
because the malicious nodes advertise higher quality

metrics. The effect of the HF attack is depicted in
Figure 7.

Fig. 6. Before HF Attack

Fig. 7. After HF Attack

As a result of this attack, the number of trans-
mitted packets of the malicious node increases.
Accordingly, we calculate Transmission Rate (TR)
(3), Transmission Average Time (TAT) (4), Trans-
mitted Packets Counts (TPC), Total Transmission
Time(TTT) and DIS features to identify this attack.

T R =
Transmitted Packet Count o f the Node

1000
(3)

T AT =
Total Transmission Time

Transmitted Packet Count o f the Node
(4)

In the RPL protocol, when version numbers of
nodes are changed by the root node, each node starts
communication to reconstruct their own routing ta-
ble. As a result, the network topology (DODAG
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tree) is changed. In the version number modifica-
tion attack, the malicious node changes its version,
then other nodes are forced to change their routing
table. So that the malicious node promotes itself to
take a better place in the routing table of other nodes.
This can have an adverse effect on the network in-
formation security and network performance due to
changed topology32.

After the attack initialization, the malicious node
gets all the packets destined to the neighbour nodes.
In analogy to the DR attack, we calculate Recep-
tion Rate (RR) (1), Reception Average Time (RAT)
(2), Received Packets Counts (RCP), Total Recep-
tion Time (TRT), DIO and DAO packet count for
detecting this attack.

3.3. Data Preprocessing and Feature Extraction

For the DR, HF and VN attacks, we have generated
various attack scenarios at a wide scale number of
IoT nodes, ranging from 10 up to 1000 nodes, with
a different percentage (5%, 10%, 20%, etc.) of ma-
licious nodes. As the result of the simulations, raw
datasets were produced.

Algorithm 1 Enrichment of IoT RAW Dataset
function

array← RAWdataset.csv
Sorted array . Sorting by time
Feature conversion

Feature Extraction:
Window Size←1000ms
Calculate Feature values within window size
Label the dataset
End of the Feature Extraction

End the function.

As explained in Section 3.1, we obtain raw data
files after the simulation. However, the raw data
files are not sufficient for being input to the learning
algorithm because the raw dataset includes informa-
tion such as source/destination nodes address and
packet length, which causes noise and overfitting in
learning algorithm. For these reasons, we imple-
mented a data preprocessing and feature extraction
algorithm in Python by using Pandas33 and Numpy28

libraries. These libraries perform the pre-processing
operations which are necessary for easier feature ex-
traction.

We implemented a dictionary structure to deal
with a large number of nodes. We opted not to
calculate global statistics over total simulated time
or total packet count since this kind of calculation
could adversely effect the calculation of weights of
extracted features. We have divided all the simula-
tion to time frames, or windows of 1000 ms duration.
Before this process, it is necessary to sort the datasets
by simulation time, because a correct sequence of
packet simulation time is necessary for correct fea-
ture value calculations. The calculation of feature
values is done according to the formulae provided in
Section 3.2. The pseudocode of the data preprocess-
ing and feature extraction algorithm is provided in
Algorithm 1.

Raw datasets include data types which are not
able to be processed by the learning algorithm, such
as IP adresses. The source and destination addresses
are converted from IPv6 format to Node ID. For ex-
ample:

f e80 :: c30c : 0 : 0 : 12 =⇒ 12 (5)

The broadcast packets are handled as follows. In
a raw dataset, if the destination address is ff02::1a,
that means the source node sends broadcast pack-
ets. This value is converted to 9999 to avoid any
coincidence with another node:

f f 02 :: 1a =⇒ 9999 (6)

Wehave also encoded the information of the pack-
ets, as shown in Table 3. DAO is used in the RPL
protocol for sending out unicast destination informa-
tion about to the selected parents. DIO is the most
important message type in RPL. It keeps the current
rank of the node, determines the best route through
the base node by using specific metrics as distance
or hop-count. Another message type is DIS. Nodes
use DIS for getting the DIO messages. ACK is an
acknowledgment message type for using to give re-
sponse by nodes31. These are encoded respectively
as 1, 2, 3 and 4. Other types in our datasets are Pro-
tocol Data Unit (PDU) and UDP packets which are
simulated data packets.
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Table 3. Encoding of the Packet Information Feature
Info Value

RPL Control (Destination Advertisement Object) 1
RPL Control (DODAG Information Solicitation) 2
RPL Control (DODAG Information Object) 3

ACK 4
Data Packets 5,6,7

As a result of feature extraction, a total of 18 can-
didate features are produced, which are also listed in
Table 4. These values are calculated as follows. First,
we calculate the Transmitted and Received Packets
Counts (TPC and RCP) for each node in 1000ms in
a specified time frame. Then, we divide these values
to 1000ms and get Transmission Rate and Reception
Rate for each node, TR (3) andRR (1) respectively, for
all time frames. Duration time for each packet trans-
mission and reception are calculated. Total Trans-
mission Time(TTT) and Total Reception Time(TRT)
are calculated by adding up duration time of each
transmission and reception packet in 1000ms. Then
Transmission and Reception Average Time for each
node, TAT (4) and RAT (2), are calculated. The
other features are about control packets; DAO, DIO
and DIS. Number of transmitted control packets of
each node are calculated within the windowing size,
1000 ms.
Table 4. Candidate Features as a Result of Feature Extraction

Number Name/Abbr. Description
1 No. Packet seq. nr.
2 Time Simulation time
3 Source Source Node IP
4 Destination Destination Node IP
5 Length Packet Length
6 Info Packet Information
7 TR Transmission Rate
8 RR Reception Rate
9 TAT Transmission Avg. Time
10 RAT Reception Avg. Time
11 TPC Transmitted Packes
12 RPC Received Packets
13 TTT Total Transmission Time
14 TRT Total Reception Time
15 DAO DAO Packets
16 DIS DIS Packets
17 DIO DIO Packets
18 Label Label: Benign/Malicious

The labelling process is also important. In our
datasets, since malicious nodes affect the all network
activity and influence normal node communication,
the traffic which includes malicious node and activ-
ity is labelled as 1 and benign traffic is labelled as

0. Then the dataset is produced by normalizing and
mixing malicious and benign traffic. The normaliza-
tion process will be explained in the next section.

A sample of the preprocessed dataset is shown in
Table 5. The data items are selected randomly from
the "VN1000" traffic data.

After feature extraction process, the datasets in-
clude up to 26x106 data items which shows why a
deep learning based methodology is needed.

3.3.1. Feature Normalization

Data resulting from different IoT routing attack sce-
narios have different mean and variance due to their
network topology, which reduces the performance
of the learning algorithm. Therefore a feature nor-
malization process is performed. We have applied
quantile transform and min-max scaling to datasets,
respectively27. Quantile transformation adjusts fea-
ture value distribution to normal distribution. It
aims to reduce the negative effect of marginal values.
Then we scale all values in the datasets to the range
0-1 by min-max scaling. The effect of feature nor-
malization process to features are depicted in Figures
8 and 9.

Fig. 8. Transmission Rate before Feature Normalization
Process

Fig. 9. Transmission Rate after Feature Normalization Pro-
cess

Finally all data resulting from different network
topologies are concatenated to produce a dataset for
an IoT routing attack type. As a result, we achieve
three attack datasets, as seen in Table 1. The col-
lection of these datasets is called IRAD. The pseu-
docode of our data normalization algorithm is given
in Algorithm 2.
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Table 5. Sample Dataset (Packet sequence number omitted)
Time Src Dst Ln Inf TR RR TAT RAT TPC RPC TTT TRT DAO DIS DIO Label

48.45566 94 893 76 1 0.197 0.197 197 197 0.012 0.012 0.00006 0.00005 197 0 0 1
48.45569 389 339 76 1 0.096 0.096 96 96 0.005 0.005 0.00005 0.00005 96 0 0 1
48.45576 158 620 76 1 0.196 0.166 196 166 0.01 0.008 0.00005 0.00005 166 0 30 1
48.45577 971 271 76 1 0.22 0.22 220 220 0.008 0.008 0.00004 0.00004 220 0 0 1
48.45577 994 331 76 1 0.227 0.227 227 227 0.008 0.009 0.00004 0.00004 227 0 0 1
48.45578 354 894 76 1 0.284 0.128 284 128 0.006 0.006 0.00005 0.00005 284 0 0 1
48.45581 565 9999 97 3 0.03 1.7 30 1698 0.002 0.097 0.00007 0.00006 0 0 30 1
48.45583 808 792 76 1 0.263 0.189 263 189 0.01 0.006 0.00004 0.00003 189 0 74 1
48.45599 691 134 76 1 0.19 0.19 190 190 0.012 0.012 0.00006 0.00006 190 0 0 1
48.45600 430 33 102 3 0.171 0.171 171 171 0.013 0.013 0.00006 0.00006 0 0 171 1

Algorithm 2 Data Normalization Algorithm
function

Mixed Dataset← Benign, Malicious Dataset
Feature Normalization:

Transformed Dataset ←Quantile Transform
(Mixed Dataset)

Min Max Scale(Transformed Dataset)
End of Feature Normalization
IRAD←Mixed Datasets . concatenating the

datasets
End the function.

3.3.2. Feature Selection

Feature selection is a key step in machine learning.
Feature selection is generally applied to the dataset
before running the machine learning algorithm, be-
cause it eliminates the irrelevant, weakly relevant
features and selects the optimal subset of all fea-
tures. It identifies the proper subset of all data fea-
tures and makes the data serviceable. There are two
main challenges; the large size of data and its incon-
venient form. A dataset has two dimensions; number
of instances and number of features, one or both of
which could be too large. This huge volume also
brings a complexity. On the other side, datasets are
created from data without features or attributes. In
this regard, correct modeling of the effects of the
attack on the network becomes the most important
step. Particularly, IRAD is produced by processing
features of network packets captured from the Inter-
net or closed network as PCAP form.

We used a combination of random decision trees
(random forests), histograms and pearson coefficient

correlation34 for feature selection process. We evalu-
ated the importance of the extracted features by using
a number of randomized decision trees (extra trees).
Main idea of randomized decision trees is bagging,
that means to adjust noisy and unbiased models to
create a model in low variance. Random decision
trees work as a large collection of decorrelated deci-
sion trees. Main idea of randomized decision trees
is bagging, that means to adjust noisy and unbiased
models to create a model in low variance. Random
decision trees work as a large collection of decorre-
lated decision trees. In brief, randomized decision
trees create different decision trees and extract impor-
tance of features by comparing the created trees35.
For this purpose we utilized the RandomForestClas-
sifier function of the sklearn library with the number
of estimators set at 100. Subsequently we determine
the efficient features. If the importance is high, a
feature dilutes the effect of others and it may cause
over-fitting at the learning process.

Table 6. Feature Importance of DR Attack
Feature Importance Selected
No. 0.0186 No
Time 0.0183 No
Source 0.8382 No
Dest. 0.0119 No
Length 0.0039 No
Info 0.0047 No
TR 0.0113 Yes
RR 0.0084 Yes
TAT 0.0087 Yes
RAT 0.0068 Yes
TPC 0.0230 Yes
RPC 0.0073 Yes
TTT 0.0124 Yes
TRT 0.0083 Yes
DAO 0.0091 Yes
DIS 0.0003 No
DIO 0.0101 Yes
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Different feature selection methods should be ap-
plied for different type of attacks, since feature im-
portance rates are different based on dataset content.
For the DR attack, importance rates are listed in Ta-
ble 6. As clearly seen in this Table, some features
cause bias over other features. The rates in the table
are initially measured importance rates. First, the
most significant feature is dropped, to avoid over-
fitting, and the least significant feature is dropped,
to avoid under-fitting. The importance rates are re-
calculated and the process is re-iterated, the learning
algorithm is executed and results are evaluated. The
process continues until the best set of features are
determined.

Feature importance rates for the selected features
of the DR attack are shown in Figure 10, as an exam-
ple. Here, X axis represents abbreviation of selected
features. Y axis represents the importance rate of
features.

We also extracted dataset histograms to observe
differences 0 and 1 within each feature. If the line
corresponding to the 0 label is significantly different
from the line of the 1 label in a feature, and it follows
the histogram distribution for 0 labels, it is a signif-
icant feature for the learning algorithm. Otherwise,
the label distributions are close to random noise,
hence the feature is insignificant and the learning
algorithm is not able to use the feature effectively.

Fig. 10. Feature Importance for DR Attack after Feature
Selection

Fig. 11. Transmission Rate Histogram of VN dataset

Fig. 12. Packet Length Histogram of VN dataset

Two sample histograms of a significant and an
insignificant feature from the VN dataset are shown
in Figure 11 and 12, respectively. The significant
feature sample belongs to the Transmission Rate fea-
ture and the insignificant feature sample belongs to
the Packet Length feature.

We also evaluated the Pearson coefficient of our
datasets to measure correlation between features.
The pearson coefficient correlation is used to under-
stand the level of dependency between the features
and the data. Guyon et al. 34 asserts that the Pear-
son coefficient correlation is appropriate for binary
classification problems. Additionally, using Pearson
coefficient correlation gives some information about
linearity and nonlinearity of the dataset. Pearson
coefficient correlation has a value within 1 and -1.
1 means total positive linear correlation, -1 means
total negative linear correlation and 0 means nonlin-
ear correlation. The basic formula for calculation of
Pearson coefficient correlation is shown in Equation
7. In this formula, ρx,y represents Pearson coeffi-
cient correlation, cov is the covariance, σx and σx

are standard deviations of x and y, respectively.

ρx,y =
cov(x, y)
σx ∗σy

(7)

r =
∑
(x− x)(y− y)√∑
(x− x)2

∑
(y− y)2

(8)

Additionally, visualization of the Pearson rate co-
efficient also helps in a deeper understanding feature-
label correlations. As an example, Pearson rate of
the TTT feature is depicted in Figure 13.

Feature normalization is a pre-processingmethod
for scaling all values of each feature into a certain
range. It makes the data smoother and cleans the
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bias from data, ensuring high accuracy rate36. How-
ever we apply the feature normalization process to
our dataset by taking all value into certain range.

Fig. 13. Pearson coefficient of TTT feature

Since the dataset is obtained through simula-
tion, we have conducted additional experiments us-
ing other classifiers in order to baseline our model.
Our aim is to compare our method to shallow learn-
ing and to establish a baseline for the applicability of
our dataset to the proposed problem. The results are
given in Table 7.

Table 7. Experiments with Shallow Classifiers

Dataset Score MLP Naive
Relu Identity Logistic Tanh Bayes

VN

Precision 0.77 0.68 0.76 0.77 0.62
Recall 0.77 0.68 0.74 0.76 0.62
F1 0.77 0.68 0.74 0.76 0.62
AUC 0.75 0.67 0.75 0.76 0.61

HF

Precision 0.97 0.94 0.97 0.97 0.89
Recall 0.97 0.93 0.97 0.97 0.89
F1 0.97 0.93 0.97 0.97 0.89
AUC 0.97 0.93 0.96 0.97 0.88

DR

Precision 0.72 0.56 0.70 0.71 0.55
Recall 0.72 0.59 0.70 0.72 0.59
F1 0.72 0.50 0.70 0.71 0.53
AUC 0.70 0.51 0.68 0.70 0.52

We conducted analyses using the MLP (Multi-
Layer Perceptron) and Naive Bayes classifiers. MLP
is a feed-forward ANN with at least three layers of
nodes. For the MLP, a one hidden layer multi-layer
perceptron is used, using different activation func-
tions. Naive Bayes is a simple probabilistic classifier

that is based on Bayes theorem and it assumes naive
independence between features. Based on these re-
sults we can conclude that the shallow classifiers do
not perform well for our problem.

3.4. Deep Learning Algorithm

Deep learning (DL), is a ML hierarchical representa-
tion, is based on Artificial Neural Networks (ANN).
Difference between ’old school’ ANN and DL is that
DL involves many hidden layers37. With the advent
of GPU computing, the training durations of DL net-
works are reduced, which has led to a mainstream
adoption of DL38,39. In DL, some advance training
methods, such as Deep Belief Network(DBN)38 or
Convolutional Neural Network(CNN)40, make effec-
tive solutions when applied to specific problem. DL
also has the capability to extract additional features
itself, based on the initial set of features provided to
the algorithm, which enables the learning process to
be more accurate.

DL is not a distinctive algorithm or another
branch of AI. It can be used in supervised, unsu-
pervised and reinforcement learning. Another ad-
vantage is that DL is built on an easily modifiable
architecture which enables to create a solution to
specific problem. For example, reinforcement learn-
ing (RL) differs from supervised and unsupervised
learning such that the actions are evaluated accord-
ing to their outcomes, i.e. RL learns the sequences
of actions that will lead to the achievement of a goal
or maximization of an objective function.

DL networks are usually trained by using back-
propagation algorithm that helps to find error gradi-
ent of loss function which is required due to gradient
descent algorithm. Back-propagation finds the er-
ror gradient faster than previous algorithms41.This
formula is presented in Equation 9. Here, Wi j de-
notes the connection weight from neuron i in layer
m to neuron j in layer m + 1 and W

′

i j denotes the
updated weight. η parameter represents the learning
rate. Finally, last parameter is derivative of error
with respect to the connection weight42.

W
′

i j =Wi j −η ∗

(
∂E
∂Wi j

)
(9)
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This formula enables to adjust the weights of each
layer as a derivation of the previous layer to enhance
the accuracy. The problem is missing weight ad-
justment due to derivative transactions. It’s called
vanishing gradient problem that limits depth of NN.
For this reason, when this formula is used, a single
hidden layer is preferred rather than multi hidden
layers. There is another function as a solution of the
vanishing gradient problem called Rectified Linear
Unit (ReLU). The mathematical equation is shown
at 10.

y = f (x) = max(0, x) (10)

If input is less then zero, output equals zero, oth-
erwise input bigger then zero, output equals input.
So it, has a non-vanishing derivative and is usu-
ally preferred for the back-propagation optimization
problem. For binary classification, ReLU function
is more suitable and we use it in the hidden layers as
the activation function.

In this study, Keras is utilized as the deep learn-
ing framework that ensures many advantages. First,
Keras is integrated into the vast Python data sci-
ence ecosystem. Second, Keras has a well docu-
mented user manual and many examples. After that,
Keras enables to build complex neural networks eas-
ily. Last but not least, TensorFlow, one of the most
popular machine learning frameworks, is accessible
with Keras.

In the implementation of the learning algorithm
based on deep learning, we used first the dataset is
shuffled, to improve deep model performance and
avoid overfitting. Before building the neural lay-
ers, the pre-processed dataset is split into two parts.
The first part, X , is the part of the dataset which
excludes the label feature. The second part, Y is
the other part of the dataset which includes the la-
bels. Accordingly, Y is the part what makes this
algorithm a supervised learning algorithm. After
the splitting step, X and Y are evaluated through
the Randomized Decision Trees method to calculate
feature importance rates. This process is fully au-
tomatized, i.e. the features causing under-fitting and
over-fitting are dropped. For creating the deep neu-
ral network model, we used the sequential model.
Mean squared error (MSE) is used as the loss func-

tion. Since we have a binary classification problem,
MSE is a suitable choice. The selected optimizer is
the AdaDelta43 algorithm. This algorithm has the
advantages that only first order information is nec-
essary for adapting over time, and has a minimal
computational overhead beyond the Stochastic Gra-
dient Descent (SGD) algorithm. In our experiments
we found that this optimizer performs the best for our
problem. Cross validation is often not used for eval-
uating deep learning models because of the greater
computational expense. We have applied shuffling
and used a random subset of the training data as a
hold-out for validation purposes. Test-train split is
performed as follows: X and Y are split into two
parts; X_train, X_test, Y_train and Y_test. X_train
and Y_train are used in the training section. X_test
and Y_test are used to evaluate the performance of
the trained model. Before the training starts, dataset
split is applied once more again at a rate of 0.1 to
produce a Validation dataset. The Validation dataset
is used to calculate the performance of the trained
model. After the training process, we save the cre-
ated model and weights as a JSON file. Finally, we
test our model for routing attacks detection by apply-
ing the model .predict function on other datasets.

We use the Sigmoid function as the activation
function for output layer. This function is also known
as the logistic function, it has a characteristic as ’S’
curve and the mathematical representation is shown
at 11. Other functions, such as Step and Linear ac-
tivation functions, are not suitable for our problem,
since they exhibit non-linear characteristics. The
other two candidate activation functions, Softmax
and Tanh function have been evaluated by experi-
mentation, however they have yielded low accuracy
rates; 35.3% and 35.8%, respectively. The accu-
racy of model has reached up to 99.5% when we use
Sigmoid function in the output layer.

y =
1

1+ e−x
(11)

Our neural network architecture consists of 7 lay-
ers. The first layer is the Input Layer, that has 10
neurons. The number of input layers should be equal
to the number of features (columns) in dataset. The
last layer is the output layer that has just a single neu-
ron. This is called the Regression Mode. Our neural
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network has 5 hidden layers. The first and fifth layers
have 50 neurons. The second and fourth layers have
100 neurons. The third layer has 300 neurons. The
neural network model for DR and VN attacks are
shown in Figure 14. The HF neural network model
is similar except that the input layer consists of 5
neurons.

Fig. 14. Neural Network Model for DR and VN Attacks

We applied best practice and experimentation
while creating neural network architecture. Re-
cent studies for finding proper network sizes and
architectures44 report that trial-and-error approach
is inevitable for complex models. Similarly, in our
study the number of neuron layers and neuron counts
were obtained by experimentation. In particular we
adopted the so-called backward trial-and-error ap-
proach, where a large number of neurons are initially
used. The network is trained and tested. When the
network exhibits overfitting, the number of hidden
neurons are gradually decreased. This process is
repeated until satisfactory performance is obtained
while avoiding overfitting.

The pseudocode of our deep learning algorithm
is given in Algorithm 3.

Algorithm 3 Deep Learning Algorithm
1: function
2: dftrain← dataset.csv
3: Shuffledftrain row by row
4: X,Y ← dftrain . Split dataset for learning
5: Feature Importance and Selection:
6: Fit (X, Y) in Randomised Decision Trees
7: Drop Insignificant and High-Bias Features
8: End of Feature Importance and Selection
9: Define X train, Y train and X test, Y test
10: Deep Learning Model:
11: model← Sequential Model
12: Set Neural Network Layers
13: optimizer← Ada Delta Optimizer . Set

Optimizer
14: Compile Classifier with loss function MSE
15: model← X train . Training starts
16: Save Model and Weights as JSON file
17: Prediction:
18: Load the datasets as dfpredict
19: Xpredict,Y predict← dfpredict
20: X predict← Scaled X predict
21: Produce Classification Report
22: End the function.

In the training process, we also avoid sharp in-
creases by applying dropout and regularization. Such
sharp increases imply that the learning function gets
stuck in local minima. With experimentation, we
have found that the best dropout rate is 10%. The
dropout technique helps deal with the over-fitting
problem. When applying dropout, some nodes lo-
cated in the hidden layers are removed randomly at
each iteration (epoch). Additionally we also apply
bias regularization to diminish non-linearity of train-
ing by limiting the peak results. Therefore, the coef-
ficients of our deep layers are much smaller, which
helps the training process to reach global minimum
in the loss function.

3.5. Performance Metrics and Class Imbalance

The key point of attack detection is to achieve high ef-
fectiveness which is calculated by using performance
metrics. All performance measurements are based
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on confusion matrix which shown in Table 8.

Table 8. Confusion Matrix
Predicted Positive Predicted Negative

Real Positive True Positive (TP) False Negative (FN)
Real Negative False Positive (FP) True Negative (TN)

If a system says there is an attack and that is true,
this prediction is a True Positive (TP), also called
positive class accuracy or sensitivity. If the system
says there is no attack and and that is true, this pre-
diction name as a True Negative (TN), also called
negative class accuracy or specificity. If the system
indicates an attack and but that is false, this predic-
tion is a False Positive (FP). If the system does not
indicate an attack but that is false, this prediction
name as a False Negative (FN). High TP and TN
(low FP and FN) prediction rates are acceptable and
desirable. Then the accuracy is calculated as follows.

Accuracy =
(TP+T N)

(TP+T N +FP+FN)
(12)

Another important performance metrics are pre-
cision and recall. Precision and recall calculations
are formalized as Equations 13 and 14, respectively.
F1-score is another widely used performance metric,
which is a function of precision and recall. F1-score
calculation is presented at Equation 15.

Precision =
(TP)

(TP+FP)
(13)

Recall =
(TP)

(TP+FN)
(14)

F1 = 2∗
precision ∗ recall
precision+ recall

(15)

However our dataset has imbalanced classes
due to the our problem. The problem of imbal-
anced classes occurs in various applications, such as
bioinformatics, e-business, information and national
security.45 In anomaly detection cases, the benign
activities are much more than the anomalies. We
also produced our dataset like that, as shown in Ta-
ble 1 in Section 1. Number of malicious nodes are
quite few than number of benign nodes. However,

we realized that the malicious nodes harm all activ-
ities of the network. So we labelled all the network,
which include malicious node(s), activity as 1 (being
affected). That is explained in Section 3.3. Then we
generated benign networks that have same topology
with the malicious. After combining the malicious
data sets and benign datasets, we produced IoT Rout-
ing Attack Dataset, three different dataset for three
different attacks to attack detection.

The mentioned performance metrics are not
preferred to calculate performance of imbalanced
dataset. Because, they can produce misleading re-
sults for highly imbalanced dataset. For example, as-
sume that, we have a test dataset that has 100 packet
which include just 1 malicious packet. If the model
always predicts benign, accuracy will be 99%. The
model seems very well for attack detection. Other-
wise, if the model always predicts malicious, recall
will be 100%. The model detects the malicious ac-
tivity, but in the other hand, it always rises the alarm
even if there is no malicious activity.46

Two different metrics are used to deal with im-
balanced dataset. First one is sensitivity (or named
True Positive Rate (TPR), positive class accuracy)
and it is samewith recall. Second one is speci f icity
(or named True Negative Rate (TNR), negative class
accuracy).45

Sensitivity(TPR) =
(TP)

(TP+FN)
(16)

Speci f icity(T NR) =
(T N)

(T N +FP)
(17)

These metrics are used to calculate the area un-
der the curve (AUC) and a receiver operating char-
acteristic (ROC). If the AUC-ROC is bigger than
0.5, it means that the model is better than random
guessing.47

4. Results and Analysis

We created three datasets that are Decreased Rank
(DR) Attack Dataset, Hello-Flood (HF) Attack
Dataset and Version Number (VN) Attack Dataset.
They consist both of attack and benign activities.
The number of values what they include and the size
of attack dataset files are listed in Table 9.
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Table 9. Datasets with Numbers
Number of Values Size (Gb)

DR Attack Dataset 49,873,385 0.58
HF Attack Dataset 64,179,435 0.75
VN Attack Dataset 22,868,210 0.27

After the dataset generation, we created an IoT
dataset and named it IRAD (IoT Routing Attack
Dataset) which contains up to 1000 IoT nodes and
three attacks. Various scenarios have been reflected
in the dataset, with different ratios of benign and
malicious nodes and total node counts. Available
datasets in the network attack detection area have
limited applicability to the IoT domain, due to dif-
ferent nature (such as ad-hoc communication, wire-
less protocols) of IoT networks. We also compared
IRAD with other similar datasets, UNSW-NB1548

and KDDCUP9924, in Table 12. The other datasets
have more attack types and therefore more features.
IRAD is specific to IoT, therefore it does not include
generic attack types and as a result, it has less at-
tack types than the compared datasets. We aim to
introduce new IoT attack types to the IRAD dataset
as our future work. At the moment, the feature set
included in IRAD is more closely related to IoT rout-
ing attacks. We also plan to extend the feature set
with different types of attacks, such as impersonation
attacks.

Our second contribution is an attack detection
neural network model based on deep learning. Start-
ing with the same candidate features and an initial
neural network model, the feature selection and deep
learning process results with a specific IoT attack
detection model for each routing attack. Since we
have obtained high precision, recall, F1 and AUC
test scores, we have shown that the obtained mod-
els are generalizable for different network topologies
and sizes. The training performance of these mod-
els (Training Accuracy, Training Loss) are listed in
Table 10.

Table 10. Training Performances
Model Accuracy Loss AUC

DR Model 94.9% 5% 89.6
HF Model 99.5% 0.8% 92.2
VN Model 95.2% 4.1% 90.3

The training accuracy and loss of the HF Model,

as well as the prediction F1-scores are better than the
other twomodels, since the Hello-flood attack affects
less network parameters than the other two attacks.
Accordingly, the best performance for the HF attack
is obtained when the detection model is trained with
5 features, while the DR and VN attacks are trained
with 10 features, as explained in Section 3.3.2. The
performance of the DR andVNmodels are also high,
with 0.94 and 0.95 F1-scores. However, one should
take into account that, for the performance of attack
detectionmodels, the precision and recall for the pos-
itive outcome is more important. The reasoning is
that, it is more acceptable to generate a false alarm
than to miss an attack. From this point of view, DR
and VNmodels also performwell, with a score equal
or more than 0.95 for precision, recall and F1-scores.

We tested our deep learning based attack detec-
tion models with data produced by multiple simula-
tion scenarios to ensure the fidelity of the models.
In addition to the scenarios included in the IRAD
dataset, we conducted tests on additional scenarios
with different number of nodes and different network
topology in addition to those included in the IRAD
dataset listed in Table 1. The additional scenarios
include, 200, 400, 750 and 1000 nodes with differ-
ent malicious/benign node and traffic ratios. The
performance figures are an average of all tests.

4.1. Decreased Rank Attack

As explained above, we tested our deep learning
based DR Model with multiple scenarios with vary-
ing malicious/benign node ratios. The figures given
are an average of all tests. The performance metrics
are listed in Table 11.

Table 11. Prediction Performance of DR Model
Precision Recall F1 Score

0 0.94 0.93 0.93
1 0.96 0.98 0.95

Average 0.95 0.96 0.94

Figure 15 and 16 are model training graphs of
DR Model.
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Table 12. A Comparison of Datasets
Parameters UNSW-NB15 KDDCUP99 IRAD
Simulation Yes Yes Yes
Attack Types 9 4 3

Number of Networks 3 2 16
Data Type Pcap files 3 types (tcpdump, BSM and dump files) PCAP files

Feature Extraction Argus, Bro-IDS and new tools Bro-IDS tool Own Implementation
Extracted Features 49 42 18
Distinct IP addresses 45 11 4520

Fig. 15. Model Accuracy of DR Dataset

Fig. 16. Model Loss of DR Dataset

4.2. Hello Flood Attack

Similarly, the performance metrics for the HFModel
are listed in Table 13.

Table 13. Prediction Performance of HF Model
Precision Recall F1 Score

0 0.97 0.98 0.99
1 0.98 0.96 0.98

Average 0.98 0.97 0.98

Figure 17 and 18 are model training graphs of the
HF Model.

Fig. 17. Model Accuracy of HF Dataset

Fig. 18. Model Loss of HF Dataset

4.3. Version Number Modification Attack

Similarly, the performancemetrics for the VNModel
are listed in Table 14.
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Table 14. Performance of VN Model
Precision Recall F1 Score

0 0.94 0.93 0.93
1 0.95 0.95 0.95

Average 0.94 0.94 0.95

Figure 19 and 20 are model training graphs of the
VN Model.

Fig. 19. Model Accuracy of VN Dataset

Fig. 20. Model Loss of VN Dataset

The F1-Score performance and AUC test scores
of these models are summarized in Table 15. The
high performance scores indicated our attack detec-
tion models are generalizable and scalable.

Table 15. Overall Performance of the Models
Model Name F1-Score AUC

Decreased Rank Model 94.7% 94.2
Hello Flood Model 99% 98.1

Version Number Model 95% 94.7

5. Discussion and Conclusions

This study is a proof of concept towards application
of deep learning for IoT security. Our study presents
an approach which can detect routing attacks based
on Big Data with high scalability and high general-
ization. The routing attacks (decreased rank attack,
hello-flood attack and version number attack) are
successfully detected by our proposed attack detec-
tion models. This work also fills an important gap
for routing attack detection in IoT systems.

The biggest issue in this area is the lack of datasets
and the quality of available data. Our attack datasets
are produced by simulation, using real sensor code
and RPL protocol implementation of Contiki-RPL.
The IRAD datasets include up to 64.2 million values,
which is a realistic scale for a real life IoT system.
Additionally, we constructed deep neural network
models trained with the IRAD datasets with high
accuracy, precision and recall rates. We have ob-
tained performance figures up to 99%, based on the
F1-Score and AUC test score.

As future work, we plan to introduce additional
attack types to IRAD. The dataset has three rout-
ing attacks; decreased rank (DR) attack, hello flood
(HF) attack and version number modification (VN)
attacks. We plan to diversify the scenarios that have
different rate of malicious and normal nodes, as well
as larger number of nodes.

We also aim to increase the model prediction per-
formance of the current models and evaluate their
performance on more routing attack types. For this
purpose, we are investigating additional features to
create a single model that could be used to detect
multiple types of attacks.

References

1. D. Janakiram, V.A. Reddy, and A. V. U. P. Kumar.
Outlier detection in wireless sensor networks using
Bayesian belief networks. In Communication Sys-
tem Software and Middleware, 2006. Comsware 2006.
First International Conference on, pages 1–6. IEEE,
2006.

2. Y. Zhang, N. Meratnia, and P. J. M. Havinga. Dis-
tributed online outlier detection in wireless sensor net-
works using ellipsoidal support vector machine. Ad
hoc networks, 11(3):1062–1074, 2013.

 
___________________________________________________________________________________________________________

56

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 39-58



3. S. Kaplantzis, A. Shilton, N. Mani, and Y. A. Seker-
cioglu. Detecting selective forwarding attacks in wire-
less sensor networks using support vector machines. In
Intelligent Sensors, Sensor Networks and Information,
2007. ISSNIP 2007. 3rd International Conference on,
pages 335–340. IEEE, 2007.

4. S. Rajasegarar, C. Leckie, M. Palaniswami, and J. C.
Bezdek. Quarter sphere based distributed anomaly
detection in wireless sensor networks. In Communica-
tions, 2007. ICC’07. IEEE International Conference
on, pages 3864–3869. IEEE, 2007.

5. Z. Yang, N. Meratnia, and P. Havinga. An online out-
lier detection technique for wireless sensor networks
using unsupervised quarter-sphere support vector ma-
chine. In Intelligent Sensors, Sensor Networks and
Information Processing, 2008. ISSNIP 2008. Interna-
tional Conference on, pages 151–156. IEEE, 2008.

6. A. L. Buczak and E. Guven. A survey of data mining
and machine learning methods for cyber security in-
trusion detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176, 2016.

7. T. Hurley, J. E. Perdomo, and A. Perez-Pons. HMM-
based intrusion detection system for software defined
networking. In Machine Learning and Applications
(ICMLA), 2016 15th IEEE International Conference
on, pages 617–621. IEEE, 2016.

8. C-F. Tsai, Y-F. Hsu, C-Y. Lin, and W-Y. Lin. Intrusion
detection by machine learning: A review. Expert Sys-
tems with Applications, 36(10):11994–12000, 2009.

9. M. D. N. Chowdhury, K. Ferens, and M. Ferens. Net-
work intrusion detection using machine learning. In
Proceedings of the International Conference on Secu-
rity and Management (SAM), page 30. The Steering
Committee of The World Congress in Computer Sci-
ence, Computer Engineering and Applied Computing
(WorldComp), 2016.

10. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: a survey. Com-
puter networks, 38(4):393–422, 2002.

11. L.Wallgren, S. Raza, and T. Voigt. Routing attacks and
countermeasures in the RPL-based internet of things.
International Journal of Distributed Sensor Networks,
9(8):794326, 2013.

12. P. Kasinathan, G. Costamagna, H. Khaleel, C. Pas-
trone, and M. A. Spirito. An IDS framework for inter-
net of things empowered by 6LoWPAN. In Proceed-
ings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, pages 1337–1340.
ACM, 2013.

13. P. Pongle and G. Chavan. Real time intrusion and
wormhole attack detection in internet of things. Inter-
national Journal of Computer Applications, 121(9),
2015.

14. F. Nait-Abdesselam, B. Bensaou, and T. Taleb. De-
tecting and avoiding wormhole attacks in wireless

ad hoc networks. IEEE Communications Magazine,
46(4):127–133, 2008.

15. Z. Banković, D. Fraga, J. M. Moya, and J. C. Vallejo.
Detecting unknown attacks inwireless sensor networks
that contain mobile nodes. Sensors, 12(8):10834–
10850, 2012.

16. F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
cooja. In Local computer networks, proceedings 2006
31st IEEE conference on, pages 641–648. IEEE, 2006.

17. S. Raza, L. Wallgren, and T. Voigt. SVELTE: Real-
time intrusion detection in the internet of things. Ad
hoc networks, 11(8):2661–2674, 2013.

18. T. Avram, S. Oh, and S. Hariri. Analyzing attacks in
wireless ad hoc network with self-organizing maps.
In Communication Networks and Services Research,
2007. CNSR’07. Fifth Annual Conference on, pages
166–175. IEEE, 2007.

19. T. Clausen and P. Jacquet. Optimized link state routing
protocol (OLSR). Technical report, 2003.

20. T. Issariyakul and E. Hossain. Introduction to network
simulator NS2. Springer Science & Business Media,
2011.

21. U. S. R. K. Dhamodharan and R. Vayanaperumal. De-
tecting and preventing sybil attacks in wireless sensor
networks using message authentication and passing
method. The Scientific World Journal, 2015:7, 2015.

22. A. A. Diro and N. Chilamkurti. Distributed attack
detection scheme using deep learning approach for in-
ternet of things. Future Generation Computer Systems,
2017.

23. A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. Fog
computing for the internet of things: Security and pri-
vacy issues. IEEE Internet Computing, 21(2):34–42,
2017.

24. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani.
A detailed analysis of the KDD CUP 99 data set. In
Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium
on, pages 1–6. IEEE, 2009.

25. Jack V. Tu. Advantages and disadvantages of using
artificial neural networks versus logistic regression for
predicting medical outcomes. Journal of Clinical Epi-
demiology, 49(11):1225 – 1231, 1996.

26. David H Wolpert. The lack of a priori distinctions
between learning algorithms. Neural computation,
8(7):1341–1390, 1996.

27. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau,M. Brucher,M. Perrot, and E. Duches-
nay. Scikit-learn:Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

28. S. Walt, S. C. Colbert, and G. Varoquaux. The NumPy
array: a structure for efficient numerical computation.

 
___________________________________________________________________________________________________________

57

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 39-58



Computing in Science & Engineering, 13(2):22–30,
2011.

29. A. Dunkels, B. Gronvall, and T. Voigt. Contiki-a
lightweight and flexible operating system for tiny net-
worked sensors. In Local Computer Networks, 2004.
29th Annual IEEE International Conference on, pages
455–462. IEEE, 2004.

30. T. Winter. RPL: IPv6 routing protocol for low-power
and lossy networks. RFC 6550, RFC Editor, October
2012.

31. A. Al-Fuqaha, M. Guizani, M. Mohammadi, and
M. Aledhari, M.and Ayyash. Internet of things: A
survey on enabling technologies, protocols, and appli-
cations. IEEE Communications Surveys & Tutorials,
17(4):2347–2376, 2015.

32. A. Aris, S. F Oktug, and S. B. O. Yalcin. RPL ver-
sion number attacks: In-depth study. In Network Op-
erations and Management Symposium (NOMS), 2016
IEEE/IFIP, pages 776–779. IEEE, 2016.

33. W. McKinney. Data structures for statistical comput-
ing in Python. In Proceedings of the 9th Python in
Science Conference, volume 445, pages 51–56. SciPy
Austin, TX, 2010.

34. I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of machine learning
research, 3(Mar):1157–1182, 2003.

35. L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

36. N. Moustafa, J. Slay, and G. Creech. Novel geometric
area analysis technique for anomaly detection using
trapezoidal area estimation on large-scale networks.
IEEE Transactions on Big Data, PP(99):1–1, 2017.

37. E. Alpaydin. Introduction to machine learning. MIT
press, 2014.

38. Rajat Raina, Anand Madhavan, and Andrew Y Ng.
Large-scale deep unsupervised learning using graph-
ics processors. In Proceedings of the 26th annual
international conference on machine learning, pages
873–880. ACM, 2009.

39. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.

Deep learning. nature, 521(7553):436, 2015.
40. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-

ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

41. David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533, 1986.

42. Miguel Moreira and Emile Fiesler. Neural networks
with adaptive learning rate and momentum terms.
Technical report, Idiap, 1995.

43. M. D Zeiler. ADADELTA: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.

44. D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and
B.M.Wilamowski. Selection of proper neural network
sizes and architectures-a comparative study. IEEE
Transactions on Industrial Informatics, 8(2):228–240,
May 2012.

45. Yuchun Tang, Yan-Qing Zhang, Nitesh V Chawla, and
Sven Krasser. SVMs modeling for highly imbalanced
classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 39(1):281–
288, 2009.

46. Patrick Glauner, Jorge Augusto Meira, Petko Valtchev,
Radu State, and Franck Bettinger. The challenge
of non-technical loss detection using artificial intel-
ligence: A survey. International Journal of Computa-
tional Intelligence Systems, 10(1):760, 2017.

47. Patrick Glauner, Andre Boechat, Lautaro Dolberg,
Radu State, Franck Bettinger, Yves Rangoni, and
Diogo Duarte. Large-scale detection of non-technical
losses in imbalanced data sets. In Innovative Smart
Grid Technologies Conference (ISGT), 2016 IEEE
Power & Energy Society, pages 1–5. IEEE, 2016.

48. N. Moustafa and J. Slay. UNSW-NB15: a comprehen-
sive data set for network intrusion detection systems
(unsw-nb15 network data set). In Military Communi-
cations and Information Systems Conference (MilCIS),
2015, pages 1–6. IEEE, 2015.

 
___________________________________________________________________________________________________________

58

International Journal of Computational Intelligence Systems, Vol. 12 (2018) 39-58




