An Integrated Algorithm of CCPP Task for Autonomous Mobile Robot under Special Missions

Caihong Li, Zhiqiang Wang, Chun Fang, Zhenying Liang, Yong Song, Yibin Li

1 School of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, PR China
E-mail: lich@sdut.edu.cn
2 School of Control Science and Engineering, Shandong University, Jinan, 250000, PR China
E-mail: songyong@sdu.edu.cn

Received 24 March 2018
Accepted 29 July 2018

Abstract

Due to the difficult problem of avoiding obstacles to achieve the complete coverage path planning (CCPP) for special missions, this paper introduces a novel integrated algorithm of CCPP for autonomous mobile robot under an obstacles-included environment. The algorithm combines cellular decomposition approach and the Standard map together for designing. The cellular decomposition approach is used to simplify the given workplace into smaller sub-regions for coverage via a chaotic path planner. The planner is constructed based on the chaotic Standard map at full mapping and produces the needed trajectories inside each decomposed sub-region. The simulation results verify the effectiveness of the designed method.

Keywords: Autonomous mobile robot; Complete coverage path planning (CCPP); Integrated algorithm; Chaotic path planner; Cellular decomposition approach; The Standard map

1. Introduction

With wide applications of the intelligent robot in domains, for example, the vacuum cleaning, harvesting, lawn mowing, underwater sources exploring, unmanned aerial vehicles (UAV) and so on, one of the core technologies, complete coverage path planning (CCPP), has received extensive attentions. CCPP is the task of determining a path that passes over all points of an area or volume of interest while avoiding obstacles. In the above circumstances, only the complete coverage of the entire terrain is needed. While for some special missions, especially in the circumstances for military applications, such as the surveillance of terrains, the terrain exploration for searching, demining, and patrolling, high unpredictability or randomness for the robot trajectories, as well as fast scanning of the workplace area are strongly required.

In 2001, Nakamura and Sekiguchi proposed a strategy to solve the above mentioned problems based on chaotic systems. In that work, the chaotic behavior of the Arnold dynamical system was imparted to the mobile robot’s motion control. Since then a great number of relative research works in the field of autonomous mobile robots have been presented, because the chaotic motion guarantees the scanning of the whole workspace without a terrain map or motion plan and can obtain unpredictable trajectories. The main characteristics of the chaotic systems are the topological transitivity and the sensitive dependence on initial conditions. Due to topological transitivity, the chaotic mobile robot is guaranteed to patrol the whole surveillance region completely without repetitions. The sensitive dependence on initial conditions is a desirable
characteristic for patrol robots, since the trajectory produced by the chaotic mobile robot is unpredictable or random. Chaotic system is very different from the random signal. The chaotic motion is based on determinism, which in the case of mobile robots is an advantage. This happens because the behavior of a robot can be predicted in advance by the system designer.

The purpose of using chaotic systems in autonomous robots is realized by designing the chaotic path planner, which ensure chaotic motion. The trajectories produced by it are used to guide autonomous robots for exploration of a terrain for vigilance. In the literature, Lorenz dynamical system, Standard or Taylor-Chirikov map, Chua circuit, Logistic map, and double-scroll systems are some of the chaotic systems which have been commonly used for this purpose. We also constructed two chaotic motion path planners, which were improved by arcsine or arccosine transformations, based on the Logistic map and Chebychev map, respectively, for an autonomous mobile robot to cover an unknown terrain completely, unpredictably, and evenly.

In the workplace without obstacles, the trajectories produced by the chaotic path planner can demonstrate the same performance as the original chaotic system, and meet the requirements of special missions. But it is difficult to design an obstacles avoiding strategy in an obstacles-included environment using the chaotic path planner while maintaining the chaotic characteristics of the coverage trajectories unchanged. Most of the researches now use the mirror mapping method to avoid obstacles for the chaotic mobile robot. It really works when the distances between two adjacent iterative points produced by the chaotic system are very short, because it only requires the measurement of the local normal of the boundaries of workspace or obstacles when the robot comes close to them. But to the systems that the distances are very large, the method is not applicable because of the frequently used of the mirror mapping almost at each iterative step. So the trajectories produced by mirror mapping method will occupy larger part of the total coverage trajectories which can influence the chaotic characteristics of the coverage trajectories. Furthermore, it has to judge whether the produced trajectory will collide with the obstacles or not in each planning step, which can increase computation complex of the method and decrease the planning efficiency.

This paper introduces an integrated algorithm to solve the above problem based on the chaotic Standard map and cellular decomposition approach. The Standard map, or called Taylor-Chirikov, is a well known two-dimensional mapping. Martins-Filho and Macau proposed an ingenious path-planning mechanism where the sequence of intermediary goal positions were obtained using the map. We also proposed a fusion iterations strategy based on the map to generate a chaotic path planner of autonomous mobile robot for surveillance missions. The Standard map is easy to be controlled for having a single parameter which determines its state. Its two variables \((x, y)\) can be directly mapped to the robot’s position or coordinates in the workplace. Furthermore it has the better coverage property in running region for its full mapping characteristics at the chaotic state when \(K \geq 8\). So we use the chaotic Standard map at \(K = 8\) to construct the chaotic path planner, and combine the cellular decomposition method to achieve the CCPP task under special missions.

The cellular decomposition method simplifies the complex coverage task into some simple sub-regions or cells for covering. Choset conjectured that most complete algorithms used an exact cellular decomposition of the free space, either explicitly or implicitly, to achieve coverage. It partitions the given environment into several smaller sub-regions, and each sub-region is covered by the robot in a prescribed manner. Once each sub-region has been covered, the overall coverage task is realized.

In this research, the given workplace including obstacles has been divided into some cells, then the rectangular feasible sub-regions are formed by them based on a merging strategy. The chaotic path planner constructed by the Standard map realizes the coverage task in decomposed sub-regions. The size of each sub-region should be in a rectangular shape to correspond to the running domain of the Standard map. The attractor characteristics of the chaotic path planner eliminates the detection of obstacles and boundaries of the workplace when the robot is covering inside a sub-region. After achieving the coverage task in one sub-region, the robot goes to another one by a safety zone, which is established to design the transition procedure between two adjacent sub-regions to avoid obstacles based on the attractor characteristics also. Avoidance of obstacles only occur during transition procedure and needs two
steps at most to achieve one transition. Compared with mirror mapping method, the designed obstacles’ avoidance method is very simple and efficient. The transition trajectories occupy little part of the whole coverage trajectories and have little effect to the chaotic characteristics of them. So under an obstacles-included environment, the constructed chaotic path planner can produce the coverage trajectories to achieve the CCPP task for special missions, with completeness, unpredictability, evenness and safety.

Some work above has been discussed in [33]. This paper further put forward the following new ideas:

(i) A systematic approach of merging strategy has been formed for constructing the rectangular iterative sub-regions. It simplifies the merging procedure and can be easily achieved by computer;

(ii) The attracting property of the chaotic Standard map is used for designing the transition procedure to facilitate the coverage procedure and improve the coverage efficiency.

(iii) The safe-zone is established to avoid the obstacle based on the attracting property of the chaotic Standard map. Only after two steps at most, the transition procedure can be achieved safely and conveniently.

The rest of the paper is organized as follows. The basic characteristics of the Standard map in the chaotic state are presented in Section 2. Section 3 constructs the chaotic path planner based on the Standard map at the fulling mapping state. The detailed designing procedure of the integrated algorithm based on cellular decomposition approach and the chaotic Standard map is described in Section 4. Section 5 illustrates a case to verify the designed algorithm. The last section outlines the conclusions and future work.

2. Characteristics of the Standard Map

The Standard map, or the Taylor-Chirikov, is a two-dimensional areas preserving dynamical system. Area-preserving mappings give rise to incredibly rich dynamics and mathematics. The researchers commonly use the following discrete formula of the Standard map to model the chaotic path planner for an autonomous mobile robot:

\[
\begin{align*}
 x_n &= x_{n-1} + K \sin y_{n-1}, \\
 y_n &= y_{n-1} + x_n, \\
 x_n &= \text{mod}(x_n, 2\pi), \\
 y_n &= \text{mod}(y_n, 2\pi).
\end{align*}
\]

Here \(x_n\) is a periodic configuration variable (angular position), and \(y_n\) is the momentum variable (angular speed), both computed mod \((2\pi)\). The map has a single parameter, \(K\), that represents the strength of the non-linear kick. Randomly selected an initial point \((x_0, y_0)\), its next \(n\) iterations, \((x_n, y_n)\), can be computed out step by step, where \(n\) is the iterative time. Because the variables \((x_n, y_n)\) are both computed mod \((2\pi)\), the range of them are bounded in \([0, 2\pi]\).

2.1. Bifurcation diagrams

Parameter \(K\) controls the dynamic properties of the Standard map. As it increases, the map evolves from double-periodic bifurcation to the chaotic state. Fig. 1 illustrates the bifurcation diagrams of the two variables with successive changing of the parameter \(K\), respectively. When \(K\) is greater than a certain value, the iterative values of \(x_n\) and \(y_n\) are full of the entire running domain, namely the system owns the completeness.

![Bifurcation diagrams](image)

Fig. 1. Bifurcation diagram (a) \(x_n\) vs. \(K\) and (b) \(y_n\) vs. \(K\).

2.2. Phase space

Bifurcation diagrams of Fig. 1 can not distinguish the boundaries clearly among different states of the system due to resolution of the picture, so the method of phase space is used to further analyze the state changing. Fig. 2 shows the phase space of the map for parameter \(K\) with varying values. As \(K\) increases, the trajectories fill a larger region of the phase space. As \(K = 5\), seen in Fig. 2(c), only a small two blank windows are left. In Fig. 2(d), for \(K = 8\), one has an impression that chaos is complete, and the system is at a full mapping state in phase space. So parameter \(K\) can assume an integer value equal or greater than 8 for the system to obtain a
complete covering trajectories in its iterative region. It has a good distribution feature and is suitable for achieving the coverage mission.

![Fig. 2. Phase space of the the Standard map vs. K (for $x_0=0.5$, $y_0=0.5$, $n=10,000$) (a) $K=1$, (b) $K=4$, (c) $K=5$ and (d) $K=8$.](image)

2.3. The largest Lyapunov exponent

The largest Lyapunov exponent (LLE) is an important evaluation index of the chaotic state for a system. If LLE > 0, the system can be assured to be chaotic. And the greater the exponent is, the better the chaotic performance the system shows. Using 5,000 sampled time sequences of x_n computed by formula (1), the LLE spectrum, shown in figure 3, is calculated based on the reconstructed attractor method.

![Fig. 3. Spectrum of LLE with parameter K](image)

The picture shows that LLE is always greater than 0 when K takes the positive integer. So the system keeps at the chaotic state owning these values, and has the maximum LLE as $K=8$, which is about 2.6. The system with this value has the best chaotic characteristics and is at the full mapping state, which is shown in Fig.2 (d). It is beneficial for the robot to produce the random and coverage trajectories. So the following map is used to achieve the CCPP task for the robot:

$$
\begin{align*}
 x_n &= x_{n-1} + 8 \sin y_{n-1}, \\
 y_n &= y_{n-1} + x_n, \\
 x_n &= \text{mod}(x_n, 2\pi), \\
 y_n &= \text{mod}(y_n, 2\pi).
\end{align*}
$$

(2)

2.4. Distribution characteristics of the coverage trajectories

The variables (x_n, y_n) produced by Eq. (2) can be used as the planned intermediary waypoint of CCPP for autonomous mobile robot. Connection of all the sub-goals according to the produced-order sequence constitute the coverage trajectories for robot to track. The planned results are shown in Fig. 4 and Fig. 5.

![Fig. 4. Planned results of the coverage path planning at $n=2,000$ (a) planned sub-goals and (b) planned coverage trajectories.](image)

![Fig. 5. Planned results of the coverage path planning at $n=5,000$ (a) planned sub-goals and (b) planned coverage trajectories.](image)

From the above analysis, one can conclude that the planned sub-goals (x_n, y_n) and coverage trajectories produced by the Standard map at $K = 8$, have a very good uniformly distribution and can guarantee the...
complete coverage. It can meet the requirements, e.g.,
completeness, evenness, and unpredictability for special
missions of CCPP task.

3. The Chaotic Path Planner

To cover a blank region of rectangular size, the
trajectories produced by Eq. (2) can be used as the
coverage path of CCPP task for autonomous mobile
robot. Fig. 4 and Fig. 5 show that the operating range of
\((x_n, y_n)\) is restricted in a rectangular scope \([0 2\pi 0 2\pi]\).
By affine transformation based on Eq. (2), the running
domain of \((x_n, y_n)\) can be mapped to a rectangular
region of any size from the original one:

\[
\begin{align*}
 x_n &= x_{n-1} + 8\sin y_{n-1}, \\
 y_n &= y_{n-1} + x_n, \\
 x_n &= \text{mod}(x_n, 2\pi), \\
 y_n &= \text{mod}(y_n, 2\pi), \\
 x_n &= a + c \cdot x_n, \\
 y_n &= b + d \cdot y_n.
\end{align*}
\]

(3)

Where the coefficients \((a, b)\) are scaling
transformation parameters, and \((c, d)\) are translation
transformation parameters. Given any initial point \((x_0, y_0)\)
in the region, time sequences, or the waypoint \((x_n, y_n)\) of
each moment, can be calculated out step by step based
on the above formula. Eq. (3) is the constructed chaotic
path planner for autonomous mobile robot to achieve
the CCPP task.

The designed chaotic path planner has attractor
characteristics. Whether the initial point \((x_0, y_0)\) is
within the iterative region or not, the successive
iterative values \((x_n, y_n)\) are all bounded
between \([0, 2\pi]\) because of the modular calculation by
\(2\pi\) in the original Standard map. So its iterative region
also can be called as attracting area. After affine
transformation, the attracting area can be mapped to a
rectangle with any shape.

Suppose there is a workplace with size 10×10. Then
the rectangular area \([0 10 0 10]\) is its attracting region.
The affine parameters \([a \ b \ c \ d]\) of the constructed
chaotic path planner is \([0 0 10/2\pi 10/2\pi]\). It produces
the coverage trajectories based on the given \((x_0, y_0)\)
and Eq. (3). Fig. 6 illustrates the attractor characteristics of
the chaotic path planner based on the planned coverage
trajectories, where the circles “o” express the initial
point \((x_0, y_0)\), the small little points mark other iterative
values, and blue lines show the planned coverage trajectories.

In Fig. 6.(a), \((x_0, y_0)\) locates inside the workplace. No matter how many times the system iterates, the iterative
values \((x_n, y_n)\) always lie in the workplace, and the robot
can’t collide with the boundaries of the workplace. So we
needn’t have to design the boundaries’ avoidance
method for the robot when it runs inside its attracting
region. In Fig. 6.(b)-(d), though \((x_0, y_0)\) locates outside
the workplace, only after one iterative step, the robot
goes into the attracting area \([0 10 0 10]\). Using the
property, we can design the transiting strategy to
achieve the transition between two adjacent sub-areas.

4. Integrated Algorithm Designing

In a rectangular workplace including obstacles, cellular
decomposition method is used to partition the
workplace and some feasible iterative sub-regions are
formed. When the autonomous mobile robot completes
the coverage task by the chaotic path planner in each
iterative sub-region in turn, the whole CCPP task
realizes. The integrated algorithm includes partition of
workplace, construction of the iterative sub-regions,
establishment of the safety zones and the transition
procedure design, formation of the coverage connected-
path, and the coverage procedure to achieve the CCPP
task. All the partitioned and constructed sub-regions
must be in a rectangular size to correspond to the shape of running domain or attracting region of the chaotic path planner.

4.1 Partition of the workplace

In an enclosed rectangular workplace including obstacles, the connected free areas without obstacles are partitioned into some smaller grids, labeled as S_x. Along the boundaries of obstacles and workplace, and the subscript x expresses the symbol of each S_x. Some parallel vertical and horizontal straight lines are used to segment the workplace. They extend to both sides along the obstacles’ boundaries until meet the borders of workplace or the boundaries of other obstacles. Then the small adjacent rectangles S are obtained from the crossing areas which are produced by the segment lines in feasible areas. The number of S_x is related to the obstacles’ number and positions in workplace.

4.2 Construction of the iterative sub-regions

In order to reduce the transition times, the number of the needed coverage sub-regions is the less, the better. Here we define a iterative sub-region, labeled as S_{I_x}, to merge the partitioned grids S_x. There are many methods that can be used. In our previous work, the corner rectangles were defined to design the method. Here, another simpler merge algorithm is designed. First select a merging direction and a group of parallel lines based on it. The merging direction can be chosen from the followed ones, namely from top to bottom, bottom to top, left to right or right to left. The parallel lines include the above parallel segment lines and the border lines of workplace. Then a rectangular iterative sub-region S_{I_x} can be constructed by all S_x between two adjacent parallel lines. The final number of S_{I_x} is same as other methods obtained and has the least value. The detailed strategy is described in Algorithm 1.

The functions contained in Algorithm 1 are introduced as follows:

- **Direction_select (i)**: The function is to select a merging direction. There are four directions for being selected:
 - $i=1$, $\text{Direction_select} (1)=1\text{, from top to bottom}$;
 - $i=2$, $\text{Direction_select} (2)=2\text{, from bottom to top}$;
 - $i=3$, $\text{Direction_select} (3)=3\text{, from left to right}$;
 - $i=4$, $\text{Direction_select} (4)=4\text{, from right to left}$.

- **Line_define ($L(x), N$)**: The function is to define a group of segment lines based on the above segmentation strategy, where N is the total number.

- **Judge_adjacent ($L(n), L(m)$)**: The function is to judge the two lines $L(n)$ and $L(m)$ are adjacent or not. If yes, the function is equal to 1; otherwise is 0.

- **Merge ($S_x, L(n), L(m)$)**: The function is to merge all the S_x between the two adjacent lines $L(n)$ and $L(m)$ into a S_{I_x}.

\begin{algorithm}
1. \text{Direction_select} (i) = i;
2. \text{Line_define} ($L(x), N$);
3. \text{n} = 1;
4. \text{While (n\leqN-1)}
 5. \text{m} = n + 1;
 6. \text{While (m\leqN)}
 7. \text{If (Judge_adjacent } (L(n), L(m))==1)
 8. \text{$S_{I_x} \leftarrow \text{Merge} (S_x, L(n), L(m))$}
 9. \text{End If}
 10. \text{m} = m + 1;
11. \text{End While}
12. \text{Return } S_{I_x}
\end{algorithm}

4.3. Establishment of the safety zones and the transition procedure design

When the robot finishes the CCPP task in one S_{I_x}, it should transfer to the adjacent one to continue working. Based on the attractor characteristics discussed in Section 3, the robot can achieve mutual transitions between two adjacent S_{I_x} via the trajectories produced by the chaotic path planner directly and easily. But when there is an obstacle nearby, the direct transition may cause collision of the robot with the obstacle. So, the safety zone, labeled as $S_{f_{I_x}}$, is set up to solve the problem. $S_{f_{I_x}}$ is one of the partitioned grids S_x between two adjacent S_{I_x}. It is defined as follows.

Definition 1 (Safety zone). The grid S_x which is located inside one S_{I_x} and has part overlap border with the adjacent S_{I_x} is called the safety zone $S_{f_{I_x}}$.

Suppose there are two adjacent iterative sub-regions which are labeled as S_{I_x} and S_{I_y}, respectively. The transition procedure from S_{I_x} to S_{I_y} based on safety zone $S_{f_{I_x}}$ and the attractor characteristics of the chaotic path planner is designed. The flowchart is shown in Fig. 7. It is only in the case that the final iterative point (x_t, y_t)
produced by the planner in S_{I_x} ends in S_{f_x}, the robot can directly start the iteration procedure of the chaotic path planner in S_{I_y}, and the coverage trajectories transit from S_{I_x} to S_{I_y} directly and safely without the help of S_{f_x}. While in other cases, in order to avoid the obstacle, the robot has to pass S_{f_x} to achieve the transition from S_{I_x} to S_{I_y}.

![Image: Flowchart of the transition procedure](image)

4.4. Formation of the coverage connected-path

The robot has to cover each S_{I_x} according to a connected-order. The order can be set in a constant sequence to guarantee the complete coverage and avoid overlapping coverage, or in a random sequence to acquire more unpredictable trajectories. A constant sequence should satisfy the following conditions:

- The path must include every S_{I_x} to guarantee the complete coverage.
- The number of S_{I_x} in the path should be as little as possible to avoid overlapping of coverage.

Though the question can be formulated as a TSP task, it has some difference. For the CCPP problem, each node (sub-region) in the route can be visited for several times to finish the coverage task instead one if only each sub-region owns relatively the same coverage evenness.

4.5. Covering procedure

According to the above designed algorithm, CCPP task in workplace can be achieved as follows.

(i) Initialization of CCPP task.

(a) Compute the affine parameters $[a, b, c, d]$ of all S_{I_x} and S_{f_x}, and construct the chaotic path planner of them based on Eq. (3);

(b) Set up the total loop time N_{Loop}. Each S_{I_x} being covered for one time is a loop;

(c) Set up the total iterative time N_{I} in one N_{Loop} according to the task requirements;

(d) Compute iterative time n_{I_x} of S_{I_x} related to N_{I} based on their size proportion to the total free area, respectively;

(e) Select the covering direction P. $P=1$: clockwise, $P=0$: counterclockwise;

(f) Select an original point (x_0, y_0) randomly, and determine the S_{I_x} in which the point is located;

(g) Set a parameter N_T to record the transition time between two adjacent S_{I_x} during CCPP task, the initial value $N_T=0$.

(ii) Start the chaotic path planner based on (x_0, y_0) and produce the covering trajectories in S_{I_x} until the sub-task of CCPP realizes inside.

(iv) Select the next S_{I_x} according to the designed coverage connected-path.

(v) Realize the transition procedure based on the designed method mentioned in Section 4.3.

(vi) Repeat the above procedure (ii)--(iv) until the covering trajectories return to the start S_{I_x} and one loop ends.

(vii) Repeat the above procedure (ii)--(v) until all loops end, and the whole CCPP task achieves.

5. Verification of the Proposed Algorithm

Here we assume a case to verify the proposed integrated method for achieving CCPP task. For the sake of simplicity, we select the most common used obstacles to illustrate the feasibility of the algorithm.

Case: as shown in Fig. 8.(a), the size of workplace is 10×10. There is a dark gray obstacle which size is 4×4 seated at the center of workplace. Its coordination of left-bottom corner is (3,3). The requirement is to compute the complete coverage trajectories for CCPP task while avoiding the obstacle, and meet the demands for the special missions.
The research resolves the problem based on the strategy discussed in Section 4 step by step.

Fig. 8.(b) shows the decomposition result. The lines L_1~L_4 are a group of horizontal parallel segmentation lines, while L_5~L_8 are the vertical ones, among which L_1, L_4, L_5 and L_8 are the boundary lines of workplace. After segmentation, the feasible area is divided into eight small adjacent grids S_n along the boundaries of obstacles and workplace, labeled as S_1, S_2, S_3, S_4, S_5, S_6, S_7, and S_8, respectively.

Select the top-bottom direction as merging direction, four iterative sub-regions, namely $S_{I_{ABC}}$, S_{I_H}, S_{I_D}, and $S_{I_{EFG}}$ are constructed respectively, which is shown in Fig. 8.(c), where $S_{I_{ABC}}$ is formed by S_1, S_3, and S_5, and $S_{I_{EFG}}$ is formed by S_6, S_7, and S_8.

The affine parameters $[a\ b\ c\ d]$ of the four $S_{I_{s}}$ solved by Eq. (2) for the chaotic path planner are illustrated in Table 1. They are used to construct the chaotic path planner based on Eq. (3) to produce the coverage trajectories inside each $S_{I_{s}}$, and part traversing trajectories for transition between two adjacent $S_{I_{s}}$.

<table>
<thead>
<tr>
<th>$S_{I_{s}}$</th>
<th>Affine transformation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{I_{ABC}}$</td>
<td>$0\ 7\ 10/2\pi\ 3/2\pi$</td>
</tr>
<tr>
<td>S_{I_H}</td>
<td>$0\ 3\ 3/2\pi\ 4/2\pi$</td>
</tr>
<tr>
<td>S_{I_D}</td>
<td>$7\ 3\ 3/2\pi\ 4/2\pi$</td>
</tr>
<tr>
<td>$S_{I_{EFG}}$</td>
<td>$0\ 0\ 10/2\pi\ 3/2\pi$</td>
</tr>
</tbody>
</table>

The safety zone $S_{I_{s}}$ between two adjacent $S_{I_{s}}$ is determined based on their connection relationship and Definition 1. All $S_{I_{s}}$ solved according to Fig. 8(b) and Fig. 8(c) are illustrated in Table 2. The affine parameters $[a\ b\ c\ d]$ of the four $S_{I_{s}}$ that are solved based on Eq. (2) are listed in Table 3.

<table>
<thead>
<tr>
<th>$S_{I_{s}}$</th>
<th>Affine transformation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{I_{C}}$</td>
<td>$7\ 7\ 3/2\pi\ 3/2\pi$</td>
</tr>
<tr>
<td>S_{I_E}</td>
<td>$7\ 0\ 3/2\pi\ 3/2\pi$</td>
</tr>
<tr>
<td>S_{I_G}</td>
<td>$0\ 0\ 3/2\pi\ 3/2\pi$</td>
</tr>
<tr>
<td>S_{I_A}</td>
<td>$0\ 7\ 3/2\pi\ 3/2\pi$</td>
</tr>
</tbody>
</table>

They will be used to construct the chaotic path planner based on Eq. (3) to produce the transition trajectories between two adjacent $S_{I_{s}}$.

One of the transition procedures, from $S_{I_{ABC}}$ to S_{I_D}, is illustrated, where $S_{I_{C}}$ is their safety zone. The simulation result is shown in Fig. 9. The iterative time $n=30$, and the original point $(x_0, y_0)=(3.8)$, which is marked as purple “*” in the figure. The chaotic path planner produces the coverage trajectories in $S_{I_{ABC}}$ based on (x_0, y_0), which is shown in Fig. 9(a). After achieving the coverage task, the final iterative point (x, y) marked as red “•”, ending at $(4.9972,7.3845)$, isn’t located in $S_{I_{C}}$. So $S_{I_{C}}$ has to be used as the transition region to avoid possible collision of the obstacle. In Fig. 9(b), start the iterative procedure of the chaotic path planner in $S_{I_{C}}$ for one time based on (x_0, y_0), the next iterative point (x_{t+1}, y_{t+1}) is immediately attracted to S_{I_C}, which is marked as a red “◇”. Then based on (x_{t+1}, y_{t+1}), start the iterative procedure in S_{I_D}, and after only one time the coverage trajectory enters into it and the transition procedure ceases, which is shown in Fig. 9(c). The red lines in the figure show the transition trajectories.
Fig. 9 shows that the transition procedure achieves conveniently and safely. Only after two steps at most, the robot can travel from one S_{I_x} to its adjacent one. The linkage points that collecting the coverage trajectories are produced randomly by the chaotic path planner instead of designing deliberately. The coverage trajectories can avoid obstacle easily because of the installment of the safety zone S_f_x, here is S_f_C. Without it, the robot will collide with the obstacle possibly, which is shown as the red lines in Fig. 10. Of course, when (x_0, y_0) ends in S_f_C, we can start the iteration of S_{I_p} directly, and transition procedure achieves by only one step without colliding with the obstacle. Fig. 11 shows the case, where $(x_0, y_0) = (8, 9)$. Safety zone is unused under this circumstance.

A coverage connected-path is formed to guide the coverage direction for robot. Fig. 12 shows a constant linkage one. It links the four S_{I_x} in a circle, where the solid arrows indicate clockwise direction, while the dotted arrows indicate counterclockwise direction.

Based on the constructed chaotic path planner and the coverage connected-path, the covering procedure algorithm is designed, which is shown in Fig. 13.

![Fig. 13. The covering procedure](image)

The algorithm has been simulated with different original point (x_0, y_0), iterative time N_I, and loop time N_{Loop}. Select the coverage direction $P=1$. The original value $N_T=0$. According to the designed transition procedure, the possible value of N_T after achievement of CCPP task in one loop will assume 4, 5, or 6. Different covering results can be obtained by changing the iterative times of N_I and N_{Loop}.

Fig. 14 and Fig. 15 shows the coverage results in one loop, namely $N_{Loop}=1$. The marks and lines have the same meaning as the above figures. The results show that from any original point (x_0, y_0), the robot can achieve the CCPP task conveniently, quickly, and safely by a limited transition time, based on the trajectories produced by the chaotic path planner. The larger the iterative time is, the better the coverage effect can get. Compared with Fig. 14, where $N_I=420$, result in Fig. 15 shows a better evenness and completeness at $N_I=8400$. In one loop, whether the N_I is, the N_T remains nearly a constant value.

![Fig. 14. The coverage trajectories at $N_I=420$, $N_{Loop}=1$.](image)

(a) $(x_0, y_0) = (3, 8), N_I=5$ and (b) $(x_0, y_0) = (8, 2), N_I=6$.
6. Conclusion

Taking advantage of the chaotic characteristics of the Standard map, an integrated algorithm has been proposed based on cellular decomposition approach in the obstacles-included environment. The cellular decomposition simplifies the CCPP task into some sub-regions coverage task, using trajectories produced by the chaotic path planner based on the Standard map. The attractor characteristics of the Standard map can deduce the designing complex of obstacles avoidance strategy. The planned coverage trajectories demonstrate almost the same characteristics as the Standard map, such as the completeness, evenness, and randomness or unpredictability, to satisfy the needs of special missions. The designed method owns the following advantages:

- No designated linkage points are needed in transition procedure between two adjacent S_{I_x}. They are produced by the chaotic path planner randomly in real time.
- Only after two steps at most, the robot can achieve the transition procedure between two adjacent S_{I_x}, so the transition trajectories have little influence to the chaotic characteristics of coverage trajectories.
- The obstacles’ avoidance method is very simple. Due to the attractor characteristics of the Standard map, the robot can work in a S_{I_x} forever without going out or colliding with the boundaries of workplace. So no edges’ detection of obstacles and the boundaries of workplace are needed when the robot runs inside a S_{I_x}. Only during transition procedure, the problem of obstacle avoidance is considered.
- Establishment of the safety zone between two adjacent S_{I_x} makes transition procedure safe and simple based on the attractor characteristics of the Standard map.

There are also many work to be further researched in the future:

- The size of non-rectangular obstacles should be considered. So we have to study the mapping strategy of the Standard map to any size area.
- For a target workplace including complex obstacles, the decomposition and transition strategy for the sub-regions have to be explored in depth.
Acknowledgments

This work is supported by the National Natural Science Foundation (NNSF) of China (61473179, 61602280, 61573213); The Natural Science Foundation of Shandong province (ZR2014FM007, ZR2014FQ028, ZR2015CM016 and 2016GGX101027).

References

6. ZH. Zheng, Y. Liu, and X. Y. Zhang, The more obstacle information sharing, the more effective real-time path planning?. Knowledge-Based Systems, 114 (2016), 36-46.
12. K.S. Hwang, J.L. Lin, H.L. Huang, Dynamic patrol planning in a cooperative multi-robot system, 14th FIRA RoboWorld Congress on Next Wave in Robotics, Communications in Computer and Information Science. 212 (Kaohsiung, Taiwan, 2011) 116-123.

