Analysis of Institution Mechanism on Cable-strut-beam

Limei Zhang1,*, Yu Song1, Zhigang Huang1, Wenhui Cui2

1School of materials science and mechanical engineering, Beijing technology and business university, Beijing, 102488
2School of civil engineering, Hebei University of Science and Technology, Shijiazhuang 050018
*Corresponding author

Abstract—The cable-strut-beam belongs to the spatial developable structure, and prestress is an important source of structural stiffness. How to apply prestress depends on the institution’s self-stress mode. Firstly, the balance equation of cable-strut-beam is established. Then the self-stress mode of the cable-strut-beam is solved by using the column principal element gaussian elimination. From analysis, the prestress importing way is defined and the initial bending moment on structural formfinding was also indicated.

Keywords—institution mechanism; cable-strut-beam; prestress

I. THE CABLE-STRUT-BEAM BALANCE EQUATION

A. Balance Equation of Space Beam Element

It is assumed that the space beam element is a straight beam with two nodes according to the assumption of flat section. The section warping and local buckling of beam element were ignored (See Figure I-II).

\[
\begin{align*}
\mathbf{T} &= \left(T_{x1}, T_{y1}, T_{z1}, M_{x1}, M_{y1}, M_{z1}, T_{x2}, T_{y2}, T_{z2}, M_{x2}, M_{y2}, M_{z2} \right)^T \\
M &= \left(m_{1x}, m_{1y}, m_{1z}, m_{2x}, m_{2y}, m_{2z} \right)
\end{align*}
\]

In the local coordinate system, the external force vector and generalized stress vector matrix of the spatial beam element were written as:

\[
\mathbf{f}^e = \left(f_{x1}, f_{y1}, f_{z1}, m_{1x}, m_{1y}, m_{1z}, f_{x2}, f_{y2}, m_{2x}, m_{2y}, m_{2z} \right)^T
\]

\[
\mathbf{f}^e = \left(T_{x1}, T_{y1}, T_{z1}, M_{x1}, M_{y1}, M_{z1}, T_{x2}, T_{y2}, T_{z2}, M_{x2}, M_{y2}, M_{z2} \right)^T
\]

According to the principle of equilibrium, it can be showed that:

\[
\begin{align*}
T_{x1} &= T_{x2} \\
T_{y1} &= -T_{y2} = \frac{1}{L} (M_{1x} - M_{2x}) \\
T_{z1} &= -T_{z2} = \frac{1}{L} (M_{1y} - M_{2y}) \\
M_{1x} &= M_{2x}
\end{align*}
\]

The reduced equilibrium equation can be expressed as:

\[
\begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{L} & 0 & \frac{1}{L} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{L} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
T_{x1} \\
M_{1x} \\
M_{1y} \\
M_{1z} \\
M_{2x} \\
M_{2y} \\
M_{2z}
\end{bmatrix}
=
\begin{bmatrix}
f_{x1} \\
f_{y1} \\
f_{z1} \\
f_{x2} \\
f_{y2} \\
f_{z2} \\
m_{2x} \\
m_{2y} \\
m_{2z}
\end{bmatrix}
\]
II. SOLVING OF SELF-STRESS MODE

According to the equilibrium equation, the singular value decomposition method [3] can be used to calculate the self-stress mode number of the structure. To the cable-strut-beam, the balance equation was analyzed by the column principal element gaussian elimination using the augmented matrix. And the results are verified by singular value decomposition method. Because of different freedom degrees on the beam element and cable element, the balance is divided into two parts: the cable-strut is A_{sg} and the beam element is A_l. (See Figure IV)

\[
\begin{bmatrix}
* & * & * & * \\
A_{sg} & A_1 & I \\
\end{bmatrix}
\]

FIGURE IV. THE COLUMN PRINCIPAL ELEMENT GAUSSIAN ELIMINATION

The columns with * are the columns of the pivot entries in the elimination process [4-6], and the total number of these columns was s. These columns are linearly dependent columns, and these columns correspond to extra internal force. For the cable strut, these columns corresponded the axial force; to the beam elements, these columns represented as the axial force or bending moment. The gaussian elimination is divided into two parts: A_1 is the matrix of non-redundant internal forces, A_2 is the matrix of redundant internal forces. The corresponding element internal force vectors were T_1 and T_2. Then, the self-stress mode of i was:

\[
T_i = -A_1^T A_2 T
\]

Assuming that the internal force of the redundant bars corresponding to unit force, the remaining excess internal forces are 0, then

\[
T_{2i} = \pm E
\]

The self-stress mode of i was expressed as:

\[
T_i = \begin{bmatrix} T_{1i} \\ T_{2i} \end{bmatrix}
\]

III. PRESTRESS IMPORTING EFFICIENCY

For the multi-self-stress modal institution $s = n_e - r_d$. The prestress distribution of the institution is a linear combination of these independent self-stress modes, which can be expressed as:

\[
T_i = \begin{bmatrix} T_{1i} \\ T_{2i} \end{bmatrix}
\]
Where, $\beta_1, \beta_2, L, \beta_4$ are combination of factors and random real constants.

Given the prestress of any redundant member, the same rod has the same prestress force, so the remaining unknown bar prestress can be calculated. Then, the inner product[7] of the self-stress mode T_i can be expressed as:

$$\langle T_i, T_i \rangle = T_i^T + T_i + \beta_4 + \beta_4$$

Comparing the inner product size of each order self-stress mode, the efficiency of this prestress method can be obtained. Furthermore, the most effective prestress tension method on overall structure were determined also.

IV. THE SELF-STRESS MODE ON THE CABLE-STRUT-BEAM INSTITUTION

A. This Institution had 20 Nodes, 8 Fixed Nodes and 12 Beam Elements, 12 Cables.

The balance equation is a matrix 60×68 order and the self-stress modes is 20. The 16th order is provided by the bending moment of the beam element, and the fourth order is generated by the unit axial force (See Figure V).

B. This Institution is Non-fully Symmetry Geiger Cable Dome and it had 72 Nodes, 24 Fixed Nodes and 36 Beam Elements, 72 Cables and Struts.

The balance equation is a matrix 60×68 order and the self-stress modes is 80. The 20 order is provided by the bending moment of the beam element, and the 60 order is generated by the unit axial force. It can be seen that the initial bending moment and axial force of beam element in the beam structure can be applying prestress on structural formfinding (See Figure VI).

FIGURE V. THE INSTITUTION OF CABLE-STRUT-BEAM

FIGURE VI. NON-FULLY SYMMETRY GEIGER CABLE DOME

V. SUMMARY

In this paper, the balance equation of the beam mechanism is established. Then the equilibrium matrix is analyzed by the column principal element gaussian elimination method and a singular value decomposition method is used to check the mode number. To determine the stress modal structure prestressed import way of efficiency, this paper also put forward that the stress modal inner product used to judge the import prestressed efficiency, and its effectiveness and feasibility is verified by numerical analysis.

ACKNOWLEDGMENT

This work appreciates very much the National Natural Science Foundation of China (No. 51278299) and Hebei Province Graduate Fund.

REFERENCES