
Study on Mind Controlled Robotic Arms by
Collecting and Analyzing Brain Alpha Waves

Yue Han1,*, Yihe Ma1, Lingkai Zhu1, Yanpeng Zhang1, Li Li2, Wei Zheng1, Junshan Guo1 and Yongqiang Che1
1State Grid Shandong Electric Power Research Institute, 2000 Wang Yue Road, 250002 Jinan, China

2State Grid of China Technology College, 500 Er Huan South Road, 250002 Jinan, China
*Corresponding author

Abstract—Assistive robotic technologies that use neural
interface systems are designed to allow people with limited
mobility to assert control with signals directly from their brains.
These robotic systems require detection and analysis of raw brain
signals, machine learning methods to extract these signals into
useful commands, and the development of an interface between
neural signals and robot control. In this paper, a method for
controlling a 4-degree of freedom RRRR WAM robotic arm with
alpha brain waves of a test subject obtained via
electroencephalography (EEG) is presented. The OpenBCI
system electrodes and board are ussubed to detect alpha waves
and transmit them to digital signal. A robust serial
communication interface is developed to convert OpenBCI data
into robot commands. An accelerometer embedded in the
OpenBCI board is used to implement left-right motion of the
robot. To assess the performance of the system, we successfully
demonstrate two primary tasks: alpha wave robot control and
alpha wave and accelerometer robot control. The methods can be
readily extended to include control from other brain regions and
additional robotic tasks, paving the way for more complex
interactions between robots and human brains.

Keywords—mind controlled; robitic arms; brain alpha waves

I. INTRODUCTION

Brain-computer interfaces (BCIs), which describe the
communication between a device and the human brain, are
becoming a widely researched topic with applications ranging
from gaming to neuromarketing and advertisement [1]. In
addition to these non-medical applications, BCIs are proving to
be useful tools in patient- assistive technologies as well. For
patients with limited mobility, the majority of current assistive
technologies rely on motor inputs for robotic control through
manual interfaces such as joysticks and keyboards. However,
for patients with extreme levels of motor impairment due to
illnesses such as stroke, amyotrophic lateral sclerosis (ALS),
and multiple sclerosis (MS), these technologies are ineffective
at providing increased mobility. BCIs are beginning to fill this
large gap in assistive technologies because they do not rely on
motor input but rather use human brain waves alone to
communicate with robots. In particular,
electroencephalography (EEG)-based brain-controlled robots
provide a robust, non-invasive method for assistive human
technologies.

EEGs are particularly useful in brain-controlled assistive
technologies due to their low cost, ease of use, and good
temporal resolution [2]. However, there are several weaknesses

in the use of EEG in robotics, such as the high level of noise in
obtained measurements, which causes difficulty in task
classification [2]. Current research efforts are aimed at
addressing these challenges in order to provide robust and
accurate pattern classification.

This study uses EEG signals obtained from a test subject to
control a WAM robot arm. In particular, we use signal
processing and support vector machines to classify brain waves
from a test subject and feed the result into the control for the
robot arm. In this way, we demonstrate a method to perform
basic tasks using brain-controlled robots and proof-of-concept
for future applications of complex human-robot interaction.

II. IMPLEMENTATION

A. EEG Protocol

The first task depends on detection of alpha brain waves.
These can be detected on EEG by asking the test subject to
close their eyes and observing a peak in EEG signal in the 8-13
Hz range [3]. In contrast, when the subject opens their eyes,
there is a significant reduction in signal in this range. EEG
placement on the subject’s head is optimized in order to
precisely record the alpha wave signal and use it to control
robot motion. A custom EEG cap is created from elastic
material to ensure secure lead placement on the subject’s head.

Classically, alpha wave signal can be most strongly
detected in the occipital lobe of the brain. While the bulk of
the signal comes from this region, finer alpha signal can also be
obtained from other areas in the brain– namely, the parietal
lobe and central lobe. Three elastic bands are placed over the
central lobe, parietal lobe, and occipital lobe.

Lead placement is determined according to the international
10-20 system of electrode placement, as seen in Figure 1, in
order to accurately detect signal from the three areas of interest
mentioned above. A summary of lead positions can be found in
Table 1. In summary, the electrodes are placed at 10 and 20
percent intervals of various perimeter measurements of the
skull. The electrodes are secured using Ten20 conductive
neurodiagnostic electrode paste. This paste serves a dual
function of securing the electrodes and ensuring high levels of
conductivity.

2nd International Conference on Applied Mathematics, Modelling and Statistics Application (AMMSA 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 143

145

FIGURE I. INTERNATIONAL 10-20 SYSTEM OF ELECTRODE

PLACEMENT FOR EEG [4]

TABLE I. FORMATTING SECTIONS, SUBSECTIONS AND SUBSUBSECTIONS.

Central Lobe
Parietal
Lobe

Occipital
Lobe

Ground and
Reference

Cz Pz O1 A1
C3 P3 O2 A2
C4 P4

B. End effector Design

Since the WAM robot does not possess an inherent end-
effector, we present several designs for potential end- effectors
to attach to the last joint and demonstrate versatility of the
system. The first design is a thumbs-up model, which simply
moves up and down when the alpha-wave is detected by the
OpenBCI sensor. This is a simple way to verify that the
implementation of the alpha-wave collection and robot control
is successful. The second design is a Pen-holder that has two
components: an inner hole to fix the pen direction while
moving, and a spring support to increase the flexibility of the
writing.

This design can potentially demonstrate more complex
controls by brain signals. For instance, the robot can draw
desired trajectories based on alpha wave detection. The third
design is a Laser-pointer holder. This interesting design can
help to show the desired path on target poster-board in response
to varying detection of alpha wave.

C. Data Analysis

The first task consists of detecting alpha waves, which are
waves in the 9 to 14 cycle frequency range that arise when a
person is in a non-aroused or relaxed state [5]. The presence of
alpha waves causes the robot to move in a particular direction,
while the lack of alpha waves causes it to reverse its direction.
To detect the relatively high-amplitude alpha waves, the
following method is used: A Fast Fourier Transform computes
the Discrete Forward Fourier of a filtered, five second sequence
of data (updated each second). Specifically, we perform (1)
Butterworth filtering and (2) Alpha wave extraction by
detecting a 10 Hz signal amplitude in the computed FFT. We
used the Eigen/FFT interface to perform FFT and IFFT
operations on the signals for filter convolution within C++, and
we gathered the Butterworth filter magnitudes using Python’s
scipy module which we saved into a file (butterworth.txt).
Simply put, defining the butterworth frequency response as b
and our raw data buffer signal as s, we perform the convolution

sf=b∗s, where sf represents the filtered signal. The next task
consists of moving the robot along a single dimension using
mental signals that result from specific motions (such as
moving the right hand, then the left hand) or by using the
accelerometer provided on the OpenBCI unit.

We started by collecting data to enable right-left robot
motion. Specifically, we collect data resulting from repeatedly
clenching and un-clenching the right hand for two minutes, as
well as tapping a hard surface for two other minutes. We then
repeat the data collection for the same motions using the left
hand. To classify the data as well as to determine which motion
would perform better in moving the robot, we separate the data
into a training and test set, and classify them using an SVM
implemented in Python using the scikit library [6].

D. Overall Program Structure

We run three threads simultaneously in order to implement
the robot control: the serial thread (functions inside OpenBCI
Board and EEGWAMBot classes), the robot control thread
(functions inside EEGWAMBot class), and the graphics thread
(GLUT library). The overall structure of the classes is shown in
Figure 2. The serial thread, control thread and graphics thread
are all necessary to control the robot in real time using the EEG
device.

FIGURE II. OVERALL STRUCTURE OF THE CLASSES

Using a matplotlib plugin for C++, we integrated Cython
into our program to do real-time plotting of the last five
seconds of EEG data. This allowed us to improve our
debugging capabilities as we reached the homestretch of the
project.

E. Serial Communication

The already-provided Python interface was converted into a
C++ interface to parse data packets streaming from the EEG
system into our data processing algorithm for analysis. As the
computer has to handle multiple threads, we used a thread-safe
library called libserial to read and write to the port. The
structure of the data packet is shown in Figure 3, where each
block represents a byte of data coming in from the serial port.
The auxiliary data represents the accelerometer data which we
use for Task 2. This implementation is contained in the class
OpenBCI Board. In order to actually transfer the data analysis
onto a robot action, we allow a callback function as an input
into our streaming function.

Advances in Intelligent Systems Research, volume 143

146

FIGURE III. THE STRUCTURE OF THE DATA PACKET

The callback function accepts as input a buffer sequence
and the buffer sequence is updated every second to issue the
next command to the robot. Since the callback function is in a
while loop after each group of 250 samples is collected, we run
our analysis every second, which we define to be 1250 samples,
or the past 5 seconds. In order to communicate between the
robot and the stream, we have a global variable ALPHA
WAVE VALUE that we update in the callback function, which
is also accessed by the robot control function.

F. Robot Control

The WAM robot is used, which is set up as a 4-dof RRRR-
bot without orientation control, as shown in Figure 4. In the
WAM, there is a base revolute joint (along ZBase; Z0; Z2) which
exerts little work and thus requires minimal torque to rotate,
the revolute "heavy-lifter" (along Z1) joint that is used to lift
the arm for various tasks, another revolute joint (along ZBase;
Z0; Z2) at the same position as the heavy lifter to twist the arm,
and finally, a revolute joint (along Z3) to move the end effector
around.

FIGURE IV. WAM ROBOT

1) Task 1: Alpha wave control
For the first robot control task, we started out with a few

simple tasks in simulation for debugging using EEGWAM
Simulator. The simple tasks include moving in an ellipse or
cycling through a list of positions, implemented using a
position control law that calculates the forces to move joints
along our defined trajectory.

The control law looks like:

 Γ0 = Jv [Λkp(xd − x) − kv x] − g 

where xd represents the desired path trajectory and x represents
the current positions of the robot. The gravity compensation g

is actually handled internally by the robot. Because we only
have a need for three degrees of freedom, we made a slight
modification to the force in order to reduce the null space
movement of the first joint. When adding our null space
damping term, we also exert a joint space force to keep the
joint value of the first joint at zero. This means calculating the
following for our final control law:

 Γ = Γ0 + βns (Γns + Γ0)

 = Γ0 + βns [Γns + (kp q0 + kv q0)] 

Notice that here, we are only implementing joint space
control on joint zero and the total sum of the forces makes the
robot use the remaining three joints to execute our intended
task. Our final parameters for the above task were: βns=3.0,
kp=200, kv=30. In both the path generation and the ellipse
following tasks, the robot moves along a given path and
switches direction based on the value of ALPHA WAVE
VALUE. In order to accomplish this, we had to define our xd
equation as follows

 xd [0] = xinit [0] 

xd [1] = xinit [1] + 0.15 · sin(2πf sgn[α > αthresh](t − ttoggle)) +
xd,toggle [1]  

xd [2] = xinit [2] + 0.15 · cos(2πf sgn[α > αthresh](t − ttoggle)) +
xd,toggle [2]  

where f is the frequency, α is the magnitude of the 10 Hz
frequency bin in the EEG signal, xd,toggle represents the last
position the robot was at before toggling, ttoggle is either 0 or
the last time the robot toggled, and sgn[α > αthresh] is +1 when
α > αthresh and -1 otherwise. For αthresh, we use hysteresis
control by defining a max-threshold of 7×10−4 µV and a min-
threshold of 5×10−4 µV when alpha waves are not detected
respectively. This allows us to smooth the task over time.
Bringing these limits closer together enables to get finer
control but may also allow noise of alpha wave detection to
start dominating.

2) Task 2: Alpha wave + accelerometer control
For the second task, we implement a combination of alpha

wave and accelerometer control. We have the WAM move in
speeds proportional to the detected alpha wave signal and
accelerometer magnitude along the roll axis of the board. To
move the robot to either left or right, we tilt our heads to the
respective directions. To lift the robot up, we close our eyes
and enter a relaxed conscious state. To bring the robot back
down, we open our eyes and enter an excited state. We created
a very simple demonstration board to show people the robot
moving along the different quadrants, which can be seen in the
video link below.

Our desired trajectories were very similar to that of Task 1.
We define four positions and moved at a speed proportional to

Advances in Intelligent Systems Research, volume 143

147

the accelerometer magnitude in left/right direction and we
used hysteresis control (as we did with Task 1) and used
position control to dynamically change xd [2], all using
position control to minimize drift due to the slightly mis-
calibrated gravity compensation that would otherwise appear
in velocity control (see Challenges). The trajectories were:

 xd [0] = xinit [0] 

xd [1] = xinit [1] + vα · sgn[α > αthresh](t − ttoggle,1) + xd,toggle,1

xd [2] = xinit [2] + a · (t − ttoggle,2) + xd,toggle,2 

where ttoggle,i represents the last toggling time for control on
dimension i and a represents a factor proportional to the
magnitude of the gyroscope acceleration value (reported by the
board in units of mm/s2). We specified limits for the robot
based on positions on our demonstration board.

III. RESULTS AND DISCUSSION

Figure 5 is the plot for the Fast Fourier Transform
magnitudes for Alpha waves, which were the most reliable way
of controlling the robot. It reads as a function of frequency for
eyes closed (red) and eyes open (blue), with corresponding
standard deviations. The peak around frequency bin 10 is
clearly visible. For the demonstration, alpha waves are used to
change the robot’s direction going from right to left, and
clockwise to counter clockwise. As described in Task 2, Alpha
waves and the OpenBCI’s accelerometer are used to move the
robot across four different quadrants.

FIGURE V. PLOT OF AVERAGE FFT MAGNITUDES

The confusion plots for the right vs. left classifiers are
shown in Figure 6. A linear SVM was used, with a penalty
parameter of 0.1 and a hard limit of training iterations of 5000.
For the squeeze and tap classifiers, the training error was both 0,
and the test error (which was 20% of the original training data)
was 2.1% and 10.4%, respectively. As mentioned above, this
particular classifier was not generalizable for general right and
left classification purposes because more data and trials were
necessary to effectively apply results to a real time task.

(A)

(B)

FIGURE VI. CONFUSION MATRIX FOR THE RIGHT VS. LEFT
CLASSIFIER: (A) SQUEEZE CLASSIFIER; (B) TAB CLASSIFIER

IV. CONCLUSION

In this study we have successfully collected and analyzed
the EEG signals obtained from a test subject to control a WAM
robot arm. In particular, we use signal processing and support
vector machines to classify brain waves from a test subject and
feed the result into the control for the robot arm. In this way,
we demonstrate a method to perform basic tasks using brain-
controlled robots and proof-of-concept for future applications
of complex human-robot interaction.

REFERENCES
[1] S.N. Abdulkader, A. Atia, M.S.M. Mostafa, “Brain computer interfacing:

Applications and challenges,” Egyptian Informatics J., vol. 16, pp. 213–
230, 2015.

[2] Q. She, Y. Ma, M. Meng, Z. Luo, “Multiclass Posterior Probability Twin
SVM for Motor Imagery EEG Classification,” Comput. Intell. Neurosci.,
vol. 2015, pp. 95, 2015.

[3] K. Kirschfeld, “The physical basis of alpha waves in the
electroencephalogram and the origin of the “Berger effect”,”. Biological
Cybernetics, vol. 92, pp. 177, 2005.

[4] J. Malmivuo, R. Plonsey, Bioelectromagnetism, UK: Oxford University
Press, 1995.

[5] E. Başar. Structures, Brain Waves, and Their Functions. Brain Function
and Oscillations.GE: Springer Berlin Heidelberg, 1999.

[6] F. Pedregosa, et al., “Scikit-learn: Machine Learning in Python,” J.
Mach. Learn. Res, vol. 12, pp. 2825–2830, 2011.

Advances in Intelligent Systems Research, volume 143

148

