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Abstract—Assistive robotic technologies that use neural 
interface systems are designed to allow people with limited 
mobility to assert control with signals directly from their brains. 
These robotic systems require detection and analysis of raw brain 
signals, machine learning methods to extract these signals into 
useful commands, and the development of an interface between 
neural signals and robot control. In this paper, a method for 
controlling a 4-degree of freedom RRRR WAM robotic arm with 
alpha brain waves of a test subject obtained via 
electroencephalography (EEG) is presented. The OpenBCI 
system electrodes and board are ussubed to detect alpha waves 
and transmit them to digital signal. A robust serial 
communication interface is developed to convert OpenBCI data 
into robot commands. An accelerometer embedded in the 
OpenBCI board is used to implement left-right motion of the 
robot. To assess the performance of the system, we successfully 
demonstrate two primary tasks: alpha wave robot control and 
alpha wave and accelerometer robot control. The methods can be 
readily extended to include control from other brain regions and 
additional robotic tasks, paving the way for more complex 
interactions between robots and human brains. 
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I. INTRODUCTION 

Brain-computer interfaces (BCIs), which describe the 
communication between a device and the human brain, are 
becoming a widely researched topic with applications ranging 
from gaming to neuromarketing and advertisement [1]. In 
addition to these non-medical applications, BCIs are proving to 
be useful tools in patient- assistive technologies as well. For 
patients with limited mobility, the majority of current assistive 
technologies rely on motor inputs for robotic control through 
manual interfaces such as joysticks and keyboards. However, 
for patients with extreme levels of motor impairment due to 
illnesses such as stroke, amyotrophic lateral sclerosis (ALS), 
and multiple sclerosis (MS), these technologies are ineffective 
at providing increased mobility. BCIs are beginning to fill this 
large gap in assistive technologies because they do not rely on 
motor input but rather use human brain waves alone to 
communicate with robots. In particular, 
electroencephalography (EEG)-based brain-controlled robots 
provide a robust, non-invasive method for assistive human 
technologies. 

EEGs are particularly useful in brain-controlled assistive 
technologies due to their low cost, ease of use, and good 
temporal resolution [2]. However, there are several weaknesses 

in the use of EEG in robotics, such as the high level of noise in 
obtained measurements, which causes difficulty in task 
classification [2]. Current research efforts are aimed at 
addressing these challenges in order to provide robust and 
accurate pattern classification. 

This study uses EEG signals obtained from a test subject to 
control a WAM robot arm.  In particular, we use signal 
processing and support vector machines to classify brain waves 
from a test subject and feed the result into the control for the 
robot arm.  In this way, we demonstrate a method to perform 
basic tasks using brain-controlled robots and proof-of-concept 
for future applications of complex human-robot interaction. 

II. IMPLEMENTATION 

A. EEG Protocol 

The first task depends on detection of alpha brain waves. 
These can be detected on EEG by asking the test subject to 
close their eyes and observing a peak in EEG signal in the 8-13 
Hz range [3]. In contrast, when the subject opens their eyes, 
there is a significant reduction in signal in this range. EEG 
placement on the subject’s head is optimized in order to 
precisely record the alpha wave signal and use it to control 
robot motion.  A custom EEG cap is created from elastic 
material to ensure secure lead placement on the subject’s head. 

Classically, alpha wave signal can be most strongly 
detected in the occipital lobe of the brain.  While the bulk of 
the signal comes from this region, finer alpha signal can also be 
obtained from other areas in the brain– namely, the parietal 
lobe and central lobe. Three elastic bands are placed over the 
central lobe, parietal lobe, and occipital lobe. 

Lead placement is determined according to the international 
10-20 system of electrode placement, as seen in Figure 1, in 
order to accurately detect signal from the three areas of interest 
mentioned above. A summary of lead positions can be found in 
Table 1.  In summary, the electrodes are placed at 10 and 20 
percent intervals of various perimeter measurements of the 
skull. The electrodes are secured using Ten20 conductive 
neurodiagnostic electrode paste.  This paste serves a dual 
function of securing the electrodes and ensuring high levels of 
conductivity. 
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FIGURE I.  INTERNATIONAL 10-20 SYSTEM OF ELECTRODE 

PLACEMENT FOR EEG [4] 

TABLE I.  FORMATTING SECTIONS, SUBSECTIONS AND SUBSUBSECTIONS. 

Central Lobe 
Parietal 
Lobe 

Occipital 
Lobe 

Ground and 
Reference 

Cz                  Pz   O1   A1 
C3                 P3   O2 A2 
C4                 P4   

B. End effector Design 

Since the WAM robot does not possess an inherent end-
effector, we present several designs for potential end- effectors 
to attach to the last joint and demonstrate versatility of the 
system. The first design is a thumbs-up model, which simply 
moves up and down when the alpha-wave is detected by the 
OpenBCI sensor. This is a simple way to verify that the 
implementation of the alpha-wave collection and robot control 
is successful. The second design is a Pen-holder that has two 
components: an inner hole to fix the pen direction while 
moving, and a spring support to increase the flexibility of the 
writing. 

This design can potentially demonstrate more complex 
controls by brain signals. For instance, the robot can draw 
desired trajectories based on alpha wave detection. The third 
design is a Laser-pointer holder. This interesting design can 
help to show the desired path on target poster-board in response 
to varying detection of alpha wave. 

C. Data Analysis 

The first task consists of detecting alpha waves, which are 
waves in the 9 to 14 cycle frequency range that arise when a 
person is in a non-aroused or relaxed state [5]. The presence of 
alpha waves causes the robot to move in a particular direction, 
while the lack of alpha waves causes it to reverse its direction. 
To detect the relatively high-amplitude alpha waves, the 
following method is used: A Fast Fourier Transform computes 
the Discrete Forward Fourier of a filtered, five second sequence 
of data (updated each second). Specifically, we perform (1) 
Butterworth filtering and (2) Alpha wave extraction by 
detecting a 10 Hz signal amplitude in the computed FFT. We 
used the Eigen/FFT interface to perform FFT and IFFT 
operations on the signals for filter convolution within C++, and 
we gathered the Butterworth filter magnitudes using Python’s 
scipy module which we saved into a file (butterworth.txt). 
Simply put, defining the butterworth frequency response as b 
and our raw data buffer signal as s, we perform the convolution 

sf=b∗s, where sf represents the filtered signal.  The next task 
consists of moving the robot along a single dimension using 
mental signals that result from specific motions (such as 
moving the right hand, then the left hand) or by using the 
accelerometer provided on the OpenBCI unit. 

We started by collecting data to enable right-left robot 
motion. Specifically, we collect data resulting from repeatedly 
clenching and un-clenching the right hand for two minutes, as 
well as tapping a hard surface for two other minutes. We then 
repeat the data collection for the same motions using the left 
hand. To classify the data as well as to determine which motion 
would perform better in moving the robot, we separate the data 
into a training and test set, and classify them using an SVM 
implemented in Python using the scikit library [6]. 

D. Overall Program Structure 

We run three threads simultaneously in order to implement 
the robot control: the serial thread (functions inside OpenBCI 
Board and EEGWAMBot classes), the robot control thread 
(functions inside EEGWAMBot class), and the graphics thread 
(GLUT library). The overall structure of the classes is shown in 
Figure 2. The serial thread, control thread and graphics thread 
are all necessary to control the robot in real time using the EEG 
device. 

 
FIGURE II.  OVERALL STRUCTURE OF THE CLASSES 

Using a matplotlib plugin for C++, we integrated Cython 
into our program to do real-time plotting of the last five 
seconds of EEG data. This allowed us to improve our 
debugging capabilities as we reached the homestretch of the 
project. 

E. Serial Communication 

The already-provided Python interface was converted into a 
C++ interface to parse data packets streaming from the EEG 
system into our data processing algorithm for analysis.  As the 
computer has to handle multiple threads, we used a thread-safe 
library called libserial to read and write to the port. The 
structure of the data packet is shown in Figure 3, where each 
block represents a byte of data coming in from the serial port. 
The auxiliary data represents the accelerometer data which we 
use for Task 2. This implementation is contained in the class 
OpenBCI Board. In order to actually transfer the data analysis 
onto a robot action, we allow a callback function as an input 
into our streaming function. 
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FIGURE III.  THE STRUCTURE OF THE DATA PACKET 

The callback function accepts as input a buffer sequence 
and the buffer sequence is updated every second to issue the 
next command to the robot. Since the callback function is in a 
while loop after each group of 250 samples is collected, we run 
our analysis every second, which we define to be 1250 samples, 
or the past 5 seconds. In order to communicate between the 
robot and the stream, we have a global variable ALPHA 
WAVE VALUE that we update in the callback function, which 
is also accessed by the robot control function. 

F. Robot Control 

The WAM robot is used, which is set up as a 4-dof RRRR-
bot without orientation control, as shown in Figure 4. In the 
WAM, there is a base revolute joint (along ZBase; Z0; Z2) which 
exerts little work and thus requires minimal torque to rotate, 
the revolute "heavy-lifter" (along Z1) joint that is used to lift 
the arm for various tasks, another revolute joint (along ZBase; 
Z0; Z2) at the same position as the heavy lifter to twist the arm, 
and finally, a revolute joint (along Z3) to move the end effector 
around. 

 
FIGURE IV.  WAM ROBOT 

1) Task 1: Alpha wave control 
For the first robot control task, we started out with a few 

simple tasks in simulation for debugging using EEGWAM 
Simulator. The simple tasks include moving in an ellipse or 
cycling through a list of positions, implemented using a 
position control law that calculates the forces to move joints 
along our defined trajectory. 

The control law looks like: 

 Γ0 = Jv [Λkp(xd − x) − kv x] − g 

where xd represents the desired path trajectory and x represents 
the current positions of the robot. The gravity compensation g 

is actually handled internally by the robot.  Because we only 
have a need for three degrees of freedom, we made a slight 
modification to the force in order to reduce the null space 
movement of the first joint. When adding our null space 
damping term, we also exert a joint space force to keep the 
joint value of the first joint at zero. This means calculating the 
following for our final control law: 

 Γ = Γ0 + βns (Γns + Γ0 ) 

  = Γ0 + βns [Γns + (kp q0 + kv q0)] 

Notice that here, we are only implementing joint space 
control on joint zero and the total sum of the forces makes the 
robot use the remaining three joints to execute our intended 
task. Our final parameters for the above task were: βns=3.0, 
kp=200, kv=30. In both the path generation and the ellipse 
following tasks, the robot moves along a given path and 
switches direction based on the value of ALPHA WAVE 
VALUE. In order to accomplish this, we had to define our xd  
equation as follows 

 xd [0] = xinit [0] 

xd [1] = xinit [1] + 0.15 · sin(2πf sgn[α > αthresh ](t − ttoggle )) + 
xd,toggle [1]  

xd [2] = xinit [2] + 0.15 · cos(2πf sgn[α > αthresh ](t − ttoggle )) + 
xd,toggle [2]  

where f is the frequency, α is the magnitude of the 10 Hz 
frequency bin in the EEG signal, xd,toggle represents the last 
position the robot was at before toggling, ttoggle is either 0 or 
the last time the robot toggled, and sgn[α > αthresh ] is +1 when 
α > αthresh and -1 otherwise. For αthresh, we use hysteresis 
control by defining a max-threshold of 7×10−4 µV and a min-
threshold of 5×10−4 µV when alpha waves are not detected 
respectively. This allows us to smooth the task over time. 
Bringing these limits closer together enables to get finer 
control but may also allow noise of alpha wave detection to 
start dominating. 

2) Task 2: Alpha wave + accelerometer control 
For the second task, we implement a combination of alpha 

wave and accelerometer control. We have the WAM move in 
speeds proportional to the detected alpha wave signal and 
accelerometer magnitude along the roll axis of the board.  To 
move the robot to either left or right, we tilt our heads to the 
respective directions. To lift the robot up, we close our eyes 
and enter a relaxed conscious state.  To bring the robot back 
down, we open our eyes and enter an excited state. We created 
a very simple demonstration board to show people the robot 
moving along the different quadrants, which can be seen in the 
video link below. 

Our desired trajectories were very similar to that of Task 1.  
We define four positions and moved at a speed proportional to 
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the accelerometer magnitude in left/right direction and we 
used hysteresis control (as we did with Task 1) and used 
position control to dynamically change xd [2], all using 
position control to minimize drift due to the slightly mis-
calibrated gravity compensation that would otherwise appear 
in velocity control (see Challenges). The trajectories were: 

 xd [0] = xinit [0] 

xd [1] = xinit [1] + vα · sgn[α > αthresh ](t − ttoggle,1 ) + xd,toggle,1

xd [2] = xinit [2] + a · (t − ttoggle,2 ) + xd,toggle,2 

where ttoggle,i represents the last toggling time for control on 
dimension i and a represents a factor proportional to the 
magnitude of the gyroscope acceleration value (reported by the 
board in units of mm/s2 ). We specified limits for the robot 
based on positions on our demonstration board. 

III. RESULTS AND DISCUSSION 

Figure 5 is the plot for the Fast Fourier Transform 
magnitudes for Alpha waves, which were the most reliable way 
of controlling the robot. It reads as a function of frequency for 
eyes closed (red) and eyes open (blue), with corresponding 
standard deviations. The peak around frequency bin 10 is 
clearly visible. For the demonstration, alpha waves are used to 
change the robot’s direction going from right to left, and 
clockwise to counter clockwise. As described in Task 2, Alpha 
waves and the OpenBCI’s accelerometer are used to move the 
robot across four different quadrants. 

 
FIGURE V.  PLOT OF AVERAGE FFT MAGNITUDES 

The confusion plots for the right vs. left classifiers are 
shown in Figure 6. A linear SVM was used, with a penalty 
parameter of 0.1 and a hard limit of training iterations of 5000. 
For the squeeze and tap classifiers, the training error was both 0, 
and the test error (which was 20% of the original training data) 
was 2.1% and 10.4%, respectively. As mentioned above, this 
particular classifier was not generalizable for general right and 
left classification purposes because more data and trials were 
necessary to effectively apply results to a real time task. 

 
(A) 

 
(B) 

FIGURE VI.  CONFUSION MATRIX FOR THE RIGHT VS. LEFT 
CLASSIFIER: (A) SQUEEZE CLASSIFIER; (B) TAB CLASSIFIER 

IV. CONCLUSION 

In this study we have successfully collected and analyzed 
the EEG signals obtained from a test subject to control a WAM 
robot arm.  In particular, we use signal processing and support 
vector machines to classify brain waves from a test subject and 
feed the result into the control for the robot arm.  In this way, 
we demonstrate a method to perform basic tasks using brain-
controlled robots and proof-of-concept for future applications 
of complex human-robot interaction. 
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