Four Categories of Human Teeth Based on Biogeography-based Optimization Algorithm and Multilayer Perceptrons

Mengmeng Yang1*, Arifur Nayeem2 and Liam O'Donnell3

1School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, P R China
2Saidpur government Technical School and College, Saidpur 5310, Bangladesh
3School of Engineering, University of Limerick, Limerick, Ireland

*Corresponding author

Abstract—Teeth is a structure in which many vertebrates exist. For some animals, such as lions, tigers and so on, teeth are chewing tools and weapons to protect themselves. But for human, it also carries the beauty of the face. When the teeth are sick, accurate classification of the teeth seems particularly important. The main purpose of this paper is to classify the teeth accurately using biogeography-based optimization algorithm (BBO) and Multilayer perceptron (MLP). The results showed our method achieved 83.75± 2.95%, 83.50± 5.16%, 84.00± 5.16%, and 84.75± 3.43% accuracy for identifying incisor, canine, premolar, and molar.

Keywords—teeth classification; biogeography-based optimization algorithm; multilayer perceptrons

I. INTRODUCTION

Teeth is an important organ for human and its function is mainly divided into three aspects [1]:

a) Chewing function: After the food enters the oral cavity, it was cut and torn by the teeth and chemical reaction with the enzyme in the saliva can partially digest the food, which plays an important role in the second digestion of the stomach.

b) Language function: teeth, tongue, lips are the three important organs of pronunciation. The position of the tooth determines the tongue's range of motion at the time of pronunciation, and the positional relationship among the three influences the pronunciation accuracy and clarity.

c) Beautiful appearance: the normal dental relationship of arch and the occlusal can make the cheeks look plump, facial expression natural; if the lack of teeth, then the lip cheeks due to loss of support and collapse, can cause facial aging.

d) Defense function: teeth can also serve as defensive enemies to protect ourselves when we are in danger of being robbed.

It can be seen from the above four points that teeth play a vital role in our diet and appearance [2], so accurately classifying the type of teeth not only can save the time of the patient but also help the doctor started treating the disease earlier when the tooth problems need to be corrected.

There are two types of teeth in our life: deciduous teeth and permanent teeth. Deciduous teeth are the first teeth of a person. Beginning to grow when the baby is six months old and ending about three years old, a total of 20. Permanent teeth are the second and final human teeth. In children six years old, deciduous teeth began to fall off, and permanent teeth began to grow, a total of 32. Because permanent teeth exist for the longest time, this paper mainly classified permanent teeth. According to the morphological characteristics of the teeth can be divided into incisors, canine, premolar, and molars. The first two belong to the front teeth, the latter two belong to the posterior teeth. FIGURE I illustrates the function of these four kinds of teeth.

FIGURE I. THE CLASSIFICATION OF TEETH WITH ITS CORRESPONDING FUNCTION

Through the above introduction, we are aware of the importance of teeth classification, while many scholars have also noticed this problem.

Mahoor and Abdel-Mottaleb [3] employed two different Fourier descriptors to extract the features and Bayesian was used as classifier. The author compared the classification performance of the two methods: complex signature and centroid distance, and chose the best method. The t-accuracy of experiment classification is up to 95.5% and the lowest accuracy is 82%. Although the experimental result is good, there is a big problem: just classify the two types of molars and premolar.

Different from the above mentioned in the literature, we propose a novel classification algorithm. First of all, we use wavelet entropy (WE) [4, 5] to extract the features of the tooth images, and input the extracted features into the multilayer
perceptron (MLP) [6, 7]. BBO algorithm [8] is used to train the
parameters of MLP to achieve the best performance.

II. MATERIALS

CT scan due to fast scan time, clear images can be clinicians
for further treatment design or preoperative choice of path to
provide accurate information. Therefore, the experimental
dataset selects the CT images of teeth, a total of 160, including
40 images of incisors, canines, premolar and molars, as shown
in FIGURE II.

(a) Incisor (b) Canine (c) Premolar (d) Molar

FIGURE II. SAMPLES OF OUR DATASET

III. METHODOLOGY

A. Wavelet Entropy

Wavelet entropy is a term combining wavelet transform [9]
and information entropy, which reflects the signal uncertainty
and complicated procedure.

Wavelet entropy [10-14] is defined as:

\[ WE = - \sum_{i=1}^{n} q_i \log q_i \]  

(1)

where \( p_i \) represents the wavelet energy, the definition of which
is as follows

\[ \sum_{i=1}^{n} q_i = 1 \quad q_i = \frac{F_i}{F} \quad F = \sum_{i=1}^{n} F_i \]  

(2)

where \( F_i \) represents the energy component of the signal in each
subspace at the same time, \( F \) is the total energy at the same time.
The step of wavelet entropy extraction feature are as follows
[15-18]:

a) Choose wavelet basis;
b) Scale the signal down;
c) Reconstruction of wavelet coefficients;
d) Calculate \( F_i \) and \( F \);
e) Calculate \( WE \);
f) Construct eigenvectors;

B. Multilayer Perceptron

MLP is a feed-forward neural network [19-21], it usually
consists of three parts: input layer, one or more hidden layers
and output layer. Its basic model shown in FIGURE III is as
follows (a hidden layer).

The mathematical formula in MLP is as follows:

\[ l_k = \sum_{i=1}^{n} W_{ik} x_i + b_k \]  

(3)

where \( l_k \) represents the input of the \( k \)-th neuron in the hidden
layer. \( x_1, x_2, x_n \ldots, x_m \) is the input unit, \( W_{ik} \) represents the
connection weight between the \( i \)-th neuron in the input layer and
the \( k \)-th neuron in the hidden layer, \( b_k \) is the bias of the \( k \)-th
hidden node.

\[ r_k = f(l_k) = f\left( \sum_{i=1}^{n} W_{ik} x_i + b_k \right) \]  

(4)

where \( f \) is the activation function, usually we use sigmoid [22-
27], its expression is as follows:

\[ f(x) = \frac{1}{1 + e^{-x}} \]  

(5)

Similarly, we can get the input and output of the output layer.

\[ q_j = \sum_{i=1}^{n} V_{ij} h_k + d_j \]  

(6)

where \( q_j \) represents the input of the \( j \)-th neuron in the output layer,
\( V_{ij} \) represents the connection weight between the \( k \)-th neuron in
the hidden layer and the \( j \)-th neuron in the output layer, \( d_j \) is the
bias of the \( j \)-th hidden node.

\[ y_j = f(q_j) \]  

(7)

where \( y_j \) represents the output of the \( j \)-th neuron in the output
layer.

From the above formula we can see that the weight and offset
values will determine the final output of the output layer. In
order to get the actual value of the output closer to the expected
value, it is very important to train the parameters to get the optimal value.

C. Biogeography-Based Optimization Algorithm

BBO is a relatively novel swarm intelligence optimization algorithm proposed by Dan Simon in 2008. BBO algorithm was compared with other optimization algorithm in [28-31], and experiment result showed that the performance of BBO is great. FIGURE IV illustrates the species habitat, each habit contains many characteristic variables such as temperature, precipitation etc. There characteristic variables correspond to the weights and bias in the multilayer perceptron.

FIGURE IV. HABITAT FOR SPECIES

Next, we compared the proposed BBO algorithm with genetic algorithm (GA) [32] and firefly algorithm (FA) [33]. The results of GA and FA were shown in TABLE II and TABLE III. GA [32] method yielded the accuracy of four teeth classes as 72.50± 5.77%, 72.50± 3.73%, 72.00± 6.95%, and 72.50± 7.17%, respectively. FA [33] method yielded the accuracy of four teeth classes as 76.00± 6.03%, 74.75± 5.58%, 75.50± 5.63%, and 75.75± 5.14%, respectively.

TABLE II. CROSS VALIDATION RESULTS OF GA METHOD

<table>
<thead>
<tr>
<th></th>
<th>Incisor</th>
<th>Canine</th>
<th>Premolar</th>
<th>Molar</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>67.50</td>
<td>70.00</td>
<td>77.50</td>
<td>65.00</td>
</tr>
<tr>
<td>R2</td>
<td>75.00</td>
<td>77.50</td>
<td>80.00</td>
<td>77.50</td>
</tr>
<tr>
<td>R3</td>
<td>65.00</td>
<td>70.00</td>
<td>82.50</td>
<td>80.00</td>
</tr>
<tr>
<td>R4</td>
<td>62.50</td>
<td>67.50</td>
<td>65.00</td>
<td>85.00</td>
</tr>
<tr>
<td>R5</td>
<td>77.50</td>
<td>75.00</td>
<td>70.00</td>
<td>62.50</td>
</tr>
<tr>
<td>R6</td>
<td>70.00</td>
<td>72.50</td>
<td>75.00</td>
<td>70.00</td>
</tr>
<tr>
<td>R7</td>
<td>77.50</td>
<td>67.50</td>
<td>70.00</td>
<td>72.50</td>
</tr>
<tr>
<td>R8</td>
<td>77.50</td>
<td>72.50</td>
<td>60.00</td>
<td>72.50</td>
</tr>
<tr>
<td>R9</td>
<td>75.00</td>
<td>75.00</td>
<td>72.50</td>
<td>75.00</td>
</tr>
<tr>
<td>R10</td>
<td>77.50</td>
<td>77.50</td>
<td>67.50</td>
<td>65.00</td>
</tr>
<tr>
<td>Average</td>
<td>72.50± 5.77</td>
<td>72.50± 3.73</td>
<td>72.00± 6.95</td>
<td>72.50± 7.17</td>
</tr>
</tbody>
</table>

It is clear that the proposed BBO is superior to both GA [32] and FA [33]. The reason is BBO contains three efficient strategies: the elite mechanism, the mutation mechanism, and the immigration mechanism. In the future, we shall test some image preprocessing approaches [34-36], to check whether they can increase the performances.

V. CONCLUSIONS

This study investigated the application of using biogeography-based optimization in teeth category identification. The results showed the success of proposed method. In the future, we shall try other bioinspired algorithms.

ACKNOWLEDGMENT

The paper is financially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX17_0342).

REFERENCES


[2] Moustari, M.H., et al., Genetic study of non-syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt


