
Estimation and Application of Skew-normal Data for 
Generalized Linear Regression 

Wenjun Lyu and Zhaoqing Feng*  
School of Economics, Shanghai University, Shanghai, China 

*Corresponding author 
 

 
Abstract—Generalized linear models are generally applied in 

statistical researches. Since a lot of real data reveal nonnormality 
especially skew-normality, new assumption is proposed that error 
terms follow skew-normal distribution to increase the 
adaptability of GLMs, which forms GLMSNs. To estimate the 
parameters in the linear part in models, penalized expectation 
maximization algorithm is extended. This paper focuses on the 
combination of skew-normal data and GLMs to get more robust 
results. Several applications and empirical analyses are given to 
fit GLMSNs and models selection is presented by Bayesian 
information criterion. 

Keywords—skew-normal distributions; generalized linear 
models; EM-algorithm  

I. INTRODUCTION  

Generalized linear models including a nonparametric 
component of some covariate into the linear regressor is one 
kind of semiparametric regression analysis approaches. Recent 
works proved asymmetry response in GLMs, whereas Relvas 
and Paula [5] derived an iterative process and some diagnostic 
procedures with AR(1) symmetric errors. 

Critically, the error terms are assumed to be skew-normal, 
not usually normality. In many fields such as biostatistics, 
econometrics, epidemiology and quantitative social research, 
data from related experiments show numerical characteristics 
like leptokurtosis and clustering, which are called skewed data. 
In this case, normal distribution is rare and traditional linear 
structure model is no longer applicable. The nonparametric 
explanatory part in regression models increased applicability. 
The expectation maximization algorithm is also improved and 
will be evaluated. 

Ferreira and Paula develop the diagnostic analysis via local 
influence as well as generalized leverage for partial linear 
models of skew-normal errors. An application about pollen-
related allergy [1] is conducted. Z.Zhou and Z.Lin (2017) 
discussed the varying coefficient nonlinear models considering 
nonstationary regressors, whose work is inspiring.    

Through simulation study and real data empirical analysis, 
the extended GLMs can improve the fitting results. In the 
simulation study, the efficiency of the EM algorithm can be 
tested. Using Bayesian information criterion and penalized log-
likelihood function to select an appropriate model. Under some 
mild conditions, the asymptotic distribution theory for the 
resulting estimators is established [7]. 

II. THE STATISTICAL TECHNIQUE 

A. Skew-normal GLMs 

When 2(; , )   presents the probability density function 
(pdf) of the normal distribution with mean μ and variance σ2, 
Φ(·) the cdf of the standard normal distribution,  the pdf of 
skew-normal distribution is (Azzalini [3]) 
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where λ controls the normality of the regressor as λ=0 or 
not. The denotation of the random variable Y is simplified as 

2( , , )SN    . The expectation and variance of Y are derived 
from its stochastic form by  
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Following analysis will present the GLM model under 
skew-normal error terms as well as the penalized maximum 
likelihood estimation using EM algorithm. Model is proposed 
as ' ( ) , 1, ,

i i i i
y x f t i n      , where yi are the 

explained variables of the ith experimental unit distributed to 
2( , , )

i
SN    , xi explanatory variables with a p-dimensional 

column vector and β the coefficient vector. Error term ϵi is 
independently distributed to zero-mean skew-normal 
distribution, ie 2( , , )

i
SN    , which is the core component of 

the GLMSN. The model can be simplified as 
Y X Nf    which is the matrix form where there are n 
observed units and p dimensions for design matrix X. N is an 
(n×k) incidence matrix with (i, j) matching the indicator 
function I(ti=tj0), j=1,…,k. f equals (f(t10),…,f(tk0))T where 
(t10,…,tk0) are the values of ti. Generalized linear regression 
models of skew-normal data (GLMSN) indicates 
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derives the log-likelihood function of 2( , , , )f     as  
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In consideration of the calculability and identifiability to 
coefficient matrix, a practical method of log-likelihood 
penalization is introduced, which uses a penalty function to 
avoid regression problems between over-fitting and non-
identification.  

B. EM Algorithm 

Expectation-maximization (EM) algorithm, introduced by 
Dempster et al (1977), is an efficient approach to maximum 
likelihood estimation (MLE). The EM algorithm works by two 
steps: first E-step for calculating the conditional expectation of 
log-likelihood as well as parameters’ estimation and next M-
step for maximizing the result from the first step. Estimating 
parameters for GLM by using EM algorithm can be 
summarized in 2 main steps in detail [1][8]: 
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then based on the cdf of Gaussian distribution, we have pdfs:  
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Ferreira and Paula (2017) [1] developed complete log-
likelihood function with missing data, which calculates results 
of E-step:  
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(10) is called Q-function. According to the work of Green 
(1990) and Ibacache and Paula (2011) [5], the EM algorithm 
for penalized likelihood estimation can be inferred as 
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where J(f) presents the penalty of pdf and smoothing parameter 
is negative. The Akaike information criterion (AIC) is applied 
for model selection[1]. When training the model and increasing 
the number of parameters, namely, increasing the complexity of 
the model, AIC tends to leads to overfitting. We consider 
Bayesian information criterion (BIC) if the dimension is too 
large and the training sample data is relatively small, the 
dimension disaster phenomenon can be effectively avoided. 
More effective model selection through BIC from EM 
algorithm is expected in empirical study. Penalized function is 
included in log-likelihood function.  
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III. SIMULATION STUDY 

In this section, a simulation study and real data application 
are presented to assess the performance of the proposed EM-
Algorithm. Two studies are implemented through R 
programming language using built-in data set fossil.  

A. Simulation Study 

A simple simulation example is conducted in this section 
using the proposed methodology and generate data with 
equations mentioned before. We assume the f(t) following 
doppler effect which is a cosine function and regressors 
distributed uniformly. Inspired by the work of Paula[1], we 
generate 500 samples for n=100, 150 and 200. Replicated 
studies present the decreasing bias of maximum likelihood 
estimation and empirical standard errors closing to standard 
deviations. 
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TABLE I.  EM ESTIMATES AND EMPIRICAL STANDARD ERROR 
ESTIMATES (N=500) 

parameter true value mean SD SE 

 5 4.99 0.09 0.06 

 1 0.96 0.10 0.08 

 3 2.94 0.54 0.39 

Mean, standard deviations and standard error estimates after 
500 iterations become very close to the true value, which reveal 
that the nonparametric estimators are consistent.  

B. Application——California Air Polution Data & Fossil  

We use R software built-in data California air pollution and 
fossil data set to demonstrate the difference between normal 
regression and skew-normal regression. The calif.air.poll data 
frame has 345 sets of observations ozone level and 
meteorological variables in Upland, California, U.S.A., in 1976, 
containing columns as follows: 

 ozone_level: Ozone concentration (ppm) at Sandburg 
Air Force Base. 

 pressure: Pressure gradient at Daggett, California. 

 height: Inversion base height, feet. 

 temperature: Inversion base temperature, degrees 
Fahrenheit. 

   

  
FIGURE I.  HISTOGRAMS AND GLM FITTED CURVE OF POLLUTION 

Histograms show the nonnormality of ozone levels in the 
original scale while approximate normality appears in log-scale. 
Considering a skew-normal distribution to this data set seems 
reasonable. As covariates included, GLMSN for ozone levels is 

1 2 3
( )

i i i i i i
ozone pressure height temperature f t        for i in (1: 

345), ti denotes the number of the ith observation of the ozone 
level which is ordinal variable.  is independently distributed. 
Thus covariate matrix has a (345 3) dimension, N for 
(345 345) and 

1 345
( ( ), , ( ))f f t f t   . 

Semiparametric regressions of ozone levels separately to 
pressure, height and temperature. Plots show the nonlinear 
relation between explained variable and explanatory variable 
generating smooth curves and confidence interval. Trend 
graphs of ozone level separately about pressure, height and 
temperature vary if one of the covariates is removed. For 
example, if height is removed, the monotonically increasing 
relationship between ozone level and temperature will be 

broken then a new first-rise-then-fall relation will be 
established. Widths of confidence intervals indicate the stability 
of the regression for each explanatory variable. In left and 
middle subgraphs, intervals are wider than right subgraph 
which illustrates proposed estimation capturing the tendency. 

Results of regression using the mixed model representation 
of penalized spines is given. The degrees of freedom and knots 
of spline show the good fitness. 

The fossil data frame has 106 sets of observations on fossil 
shells, containing columns as follows: 

 strontium.ratio: ratios of strontium isotopes. 

 age: fossil age in millions of years 

TABLE II.  GLM REGRESSION RESULTS 

non-linear 
components 

summary 

df spar knots 

pressure 4.697 88.8 31 

height 4.198 2741.0 39 

temperature 3.248 58.0 38 

Skew-normality again appears in fossil data from 
histograms and boxplot. Points scattering evenly around the 
fitted curve shows that the linear model is not applicable but 
partially linear model can generate a good fitting. It is noticed 
that the intensity of points is related to the width of confidence 
interval that intervals tighten where points gather, which 
reflects the advantage of generalized linear models than linear 
models.  

     

 
FIGURE II.  HISTOGRAMS AND GLM FITTED CURVE OF FOSSIL 

The regression curve verified the nonlinearity and there 
exist several extreme points. Concavity and convexity both 
appear in the fitted curve and the intensity of the points 
scattering infers the accuracy of generalized linear model to this 
skew-normal kind of data.  
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C. Application——Annual Household Income  

We extract data from Chinese Household Income Project 
(2013) to analyze the influencing factors to annual income of 
rural families whose members have completed high school 
education. The explanatory variables consist of:   

 inc: annual household income of 2013.  

 page: family members’ average age. 

 phealth: family members’ average health level (1~5 
stands from best to bad) 

 ptime: family members’ average working time in a year 
(months) 

The income data are not distributed normally form the 
histograms and boxplot drawn below. From correlation matrix 
and VIF, multicollinearity is excluded. Comparison analysis 
will be performed between normal and skew-normal error 
terms.  

 
FIGURE III.  HISTOGRAMS OF INCOME 

Table 3 reports the values of the estimated parameters and 
the BIC and AIC are given for each model. By comparing two 
estimations we may notice inferential conclusion differs 
completely opposite for the sign of the coefficients. Values of 
Bayesian and Akaike information criterion are also presented 
for each model that two criterions are both smaller in 
generalized linear model than linear model indicating its better 
performance. Especially the pressure turns zero in generalized 
linear model although that is close to zero in linear model. This 
reflects the linear part of GLM regression relatively 
underestimates the effects of regressors. Residuals analysis for 
two regression models is given in the form of median value, the 
latter model being closer to zero. We use Bayesian information 
criterion with penalized spline in GLM and the value is smaller 
and it shows a little bit better goodness for fit which means the 
model selection tends to GLM. 

TABLE III.  COEFFICIENTS OF NORMAL AND GLMSN COMPARISION 

covariate 
LM GLM 

coefficient 
standard 

errors 
coefficient 

standard 
errors 

intercept 1.665 4.670 0.297 0.081 

pressure -0.031 0.077 0.000 0.001 

height -0.832 0.751 0.013 0.010 

temperature 0.901 0.278 -0.019 0.006 

AIC 699.6 660.6 

BIC 713.2 674.1 
Residuals 
(median) 

-0.592 -0.061 

IV. CONCLUSION 

From the estimation and applications, the proposed skew-
normal generalized linear models are promising and the 
extended EM algorithm with penalized function works better 
in term of information criteria. A simple simulation study and 
empirical analysis give the comparison between linear and 
generalized linear regression in skew-normal data. The results 
of rural household income regression illustrate the 
applicability of the method. To estimate the parameters in the 
linear part in models, the extended penalized expectation 
maximization algorithm is used. The combination of skew-
normal data and GLMs gives more robust results according to 
empirical analysis of household income. 
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