An efficient SAT algorithm for complex job-shop scheduling

Hong Huang1,a and Shaohua Zhou1,b

159 Qinglong Road, Southwest University of Science and Technology, Mianyang, Sichuan, P.R.China 621010

ahuanghong@swust.edu.cn, b23082945@qq.com

Keywords: job-shop scheduling; Boolean Satisfiability; coding optimization; exact solution

Abstract. The job-shop scheduling problem (JSSP) is a typical scheduling problem, which belongs to NP-hard problem. This paper tries to solve the complex JSSP by translating it into Boolean Satisfiability Problem. Even though the representation of JSSP in SAT is not a new issue, the solution to the complex JSSP is still a difficult problem because of processing time too long. In this paper, we optimized the SAT encoding method, thus reducing the number of clauses and their processing efficiency in the solver. We used the Ft20 and ABZ8 problem to experiment, the results show that the optimized coding method can greatly improve the processing efficiency.

Introduction

Production scheduling system is a research hotspot in manufacturing system and one of the most difficult problems in theoretical research. The task of scheduling is to determine the processing path, time, machine and operation for each machining object according to the production objectives and constraints. Excellent scheduling strategy for improving the optimization of production systems, improving economic efficiency, has a great role [1].

The JSSP is a typical scheduling problem, which is one of production scheduling system problems. It has been widely used in many fields [2-4]. The JSSP belong to NP-hard problem, and many researcher have studying it. Various approaches have been proposed for solving the problem. The related work mainly takes two methods to study: approximation method and exact method.

In the case of approximate solutions, many scholars have proposed many methods in recent years. Genetic Algorithm [5, 6], estimation of distribution algorithm, discrete differential evolution algorithm, linear programming, dynamic programming, branch definition and other algorithm [7-11], have been widely used in the JSSP.

The exact solution is mainly relevant to our works. At present, the researchers focus on solving the JSSP problem with SAT Crawford and Baker [12] gave a series of experiments applying satisfiability algorithms to solve scheduling problems. Kosimura and his team [13] used the encoding method proposed by Crawford and Baker, proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. In addition, they improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4. Popov [14] proposed using satisfiability algorithms to solve the task-resource scheduling problems in cloud computing system. Cruz-Chávez and Rivera-Lopez [15] gave the application of a local search algorithm for a logical representation of the JSSP problem. Hamadi and Youssef [15] proposed a new clause learning method, which is the important for modern SAT solvers. Micheli and Mishchenko, A extended the SAT formulation to find a minimum-size network under delay constraints [17]. Other scholars have done a lot of work in the field [18].

To the exact solution, or the complexity is large, or the optimization performance is poor, it is difficult to high-quality solution complex problems [13]. In this paper, taking into account the SAT algorithm to solve complex JSSP problem takes a long time and other issues, we tries to optimize the SAT encoding method, reducing the number of clauses and their running efficiency in the solver, so as to achieve a more efficient goal of solving complex problems. In section 2, we consider the problem of finding an optimal feasible schedule. In particular, we show the relationship between the graph and JSSP. In section 3, we represent the optimized SAT coding method. Data for experiments is
considered in section 4. In section 5, we propose a data automatic analysis method, which can generate the Gantt chart to represent the solution.

Problem definition

A JSSP consists of a finite set of m jobs $J = (j_1, j_2, ..., j_m)$, a finite set of n machines $M = (m_1, m_2, ..., m_n)$, each job consists of a chain of operations $O = (o_1, o_2, ..., o_k)$ and each operation has processing time $\{\tau_1, \tau_2, ..., \tau_k\}$. In addition, all the work of all the operations is defined as the task $T = (t_1, t_2, ..., t_m)$ in the paper.

An instance of the JSSP problem can be represented by means of a disjunctive graph $G = (O, A, E)$, the vertices in O represent the operations, the arcs in A represent the given precedence between the operations, the edge in $E = \{(v, w) | v, w \in O, v \neq w, M(v) = M(w)\}$ represent the machine capacity constraints, each vertex v has a weight, equal to the processing time $\tau(v)$. The example is shown in Fig. 1.

![Disjunctive graph with edge orientations](image)

Fig. 1 Disjunctive graph with edge orientations

Finding an optimal feasible schedule is equivalent to finding an orientation E' that minimizes the longest path length in the related digraph.

SAT encoding

Each operation o consists of four basic elements: (1) a starting time s, (2) a processing time p, (3) a deadline time d, (4) a ready time r. At the same time, we need to define several constraints: (1) If operation o_i precedes o_j, we can express it as $pr_{o_i, o_j}(1 \leq o_i \leq n3, 1 \leq o_j \leq n3)$, (3) Resource capacity constraints, written c_{o_i, o_j}, state operation o_i and o_j conflict, because operation o_i and o_j require the same machine. Under all constraints, the time required to complete all the jobs is called as the makespan L. The objective of the JSSP is to determine the schedule which minimizes L.

We introduce two kinds of propositional variables:

- $sa_{i,t}$, it states that operation i starts at t or after.
- $eb_{i,t}$, it states that operation i ends at t or before.

We translate the JSSP into a SAT problem by the Crawford encoding [4]. It includes constraints and coherence conditions coding. In the translation, we do a lot of optimization to improve the efficiency of coding operation. Scheduling constraints are then translated by:

1. $pr_{o_i, o_j}(1 \leq o_i \leq n3, 1 \leq o_j \leq n3)$
 It states that o_i precedes o_j.
2. $pr_{o_i, o_i} \lor pr_{o_i, o_k}(1 \leq o_i \leq n3, 1 \leq o_j \leq n3)$
 If o_i and o_j require the same machines, then o_i precedes o_j or o_j precedes o_i.
3. $pr_{o_i, o_j} \in U \land \neg pr_{o_i, o_j} = \emptyset$
We define the set of pr_{o_i,o_j} is U.

4. $s_{a_{o_i},t} (1 \leq o_i \leq n3, t = \sum_{u=1}^{k-1} p_u)$

Operation o_i is not able to start before all previous operations $\{o_1, o_2, \ldots, o_{i-1}\}$ end. It required at least $t = \sum_{u=1}^{k-1} p_u$. That is, o_i starts at time t or later.

5. $e_{b_{o_j},t} (1 \leq o_i \leq n3, t = \sum_{u=k+1}^{n3} p_u)$

In order to complete all the jobs by L, it is necessary for Operation o_i to end by time t or before,

$t = \sum_{u=k+1}^{n3} p_u$

In addition, it is also necessary to add a collection of “coherence conditions” on the introduced variables. In all conditions below, o_i and o_j are quantified over all relevant operations and t is quantified over all relevant times.

3. $s_{a_{o_i},t} \rightarrow s_{a_{o_i},t-1} (1 \leq o_i \leq n3, \sum_{u=1}^{k-1} p_u \leq t \leq L)$

It states that operation o_i starts at or after t, it starts at or after $t-1$. In particular, the starting time of t is not 1, but $\sum_{u=1}^{k-1} p_u$. That is because the ready times can be determined, $s_{a_{o_i},t} (t < \sum_{u=1}^{k-1} p_u)$ will be always true, so they can be eliminated. This will reduce the number of clauses, thereby increasing the efficiency of the solver.

4. $e_{b_{o_j},t} \rightarrow e_{b_{o_j},t+1} (1 \leq o_i \leq n3, 1 \leq t \leq L - \sum_{u=k+1}^{n3} p_u)$

This ensures that if o_i ends by t, then it ends by $t+1$. In particular, the ending time of t is not L, but $L - \sum_{u=k+1}^{n3} p_u$. That is because the deadlines of each operation can be determined. If these times are known, the clauses in the codification that contain $e_{b_{o_j},t}$ will be always true, so they can be eliminated. This will reduce the number of clauses, thereby increasing the efficiency of the solver.

5. $s_{a_{o_i},t} \rightarrow e_{b_{o_i},t+p_{i-1}} (1 \leq o_i \leq n3, 1 \leq t \leq L - p_i + 1)$

If o_i starts at or after time t, then it cannot end before time $t + p_i - 1$. In particular, the ending time of t is not L, but $L - p_i + 1$.

6. $s_{a_{o_j},t} \land \text{pr}_{o_j, o_i} \rightarrow s_{a_{o_j},t+p} (1 \leq t \leq L - p_i + 1, \text{pr}_{o_j, o_i} \subseteq U)$

If o_i starts at or after t and o_j follows o_i, then o_j can’t start until o_i is finished. In particular, $\text{pr}_{o_j, o_i} \subseteq U$ is key. It is because it is focus of the different operating to establish the relationship, which is a strong connection. It produces clauses that accounts for the majority of all the clauses. After a lot of experiments we found that the pr_{o_j, o_i} is only related to those pr_{o_i, o_j} which appear in the constraint conditions.

Data for experiments

We need to convert the SAT code to the CNF formula and represent them in numbers. It is important that variables need to be represented by continuous numbers. Otherwise, the number of variables will increase when solver deal with them, thus affecting the efficiency of problem solving.

According to the previously proposed method, we tried to solve two open JSSPs: Ft20 and ABZ9. Ft10 consists of 10 jobs and 10 machines. Each job consists of 10 operations, and Ft20 consists of 20 jobs and 5 machines, each job consists of 5 operations. ABZ9 consists of 20 jobs and 15 machines, and each job consists of 15 operations.

All experiments were conducted on the personal computer (CPU: Intel 2.60GHz, Memory: 4.00GB, OS: Ubuntu 14.04.5). We use the SAT solver MiniSAT2.2.0 to solve these problems.
In order to quickly get the critical value, we take the following method.
1. We estimate or use other fast algorithms for a smaller value N_1 and a larger one N_2, and calculate it with Minisat.
2. If the result of N_1 is no, the result of N_2 is yes, then $(N_1+N_2)/2$ is assigned to N_3, and calculate it with Minisat.
3. If the result of N_3 is yes, repeat step 2.
4. If the result of N_3 is no and the result of N_3+1 is no also, then N_2-1 is assigned to N_3, and calculate it with Minisat.
5. If the result of N_3 is no and the result of N_3+1 is yes, then N_3+1 is the optimized result.

Solving Ft20

<table>
<thead>
<tr>
<th>N</th>
<th>Number</th>
<th>CPU (secs)</th>
<th>Satisfiable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variables</td>
<td>Clauses</td>
<td></td>
</tr>
<tr>
<td>1095</td>
<td>220980</td>
<td>1922795</td>
<td>97826.800</td>
</tr>
<tr>
<td>1096</td>
<td>221180</td>
<td>1925055</td>
<td>18.520</td>
</tr>
<tr>
<td>1097</td>
<td>221380</td>
<td>1927315</td>
<td>19.404</td>
</tr>
<tr>
<td>1099</td>
<td>221780</td>
<td>1931835</td>
<td>17.840</td>
</tr>
<tr>
<td>1100</td>
<td>221980</td>
<td>1934095</td>
<td>15.176</td>
</tr>
<tr>
<td>1115</td>
<td>224980</td>
<td>1967995</td>
<td>12.712</td>
</tr>
<tr>
<td>1125</td>
<td>226980</td>
<td>1990595</td>
<td>15.472</td>
</tr>
<tr>
<td>1150</td>
<td>231980</td>
<td>2047095</td>
<td>14.000</td>
</tr>
<tr>
<td>1160</td>
<td>233980</td>
<td>2069695</td>
<td>13.824</td>
</tr>
<tr>
<td>1165</td>
<td>234980</td>
<td>2080995</td>
<td>13.796</td>
</tr>
<tr>
<td>1200</td>
<td>241980</td>
<td>2160095</td>
<td>21.568</td>
</tr>
</tbody>
</table>

From Table I, we can see: the optimized of the Ft20 problem is 1096. But its L is 1096 plus p (the last task of the processing time), isn’t 1096.

Solving ABZ9

In addition, we succeeded to solve the problem of ABZ9. Table II shows the experimental results. The first columns show the size of the SAT instance. The second shows the number of propositional variables and the third shows the number of clauses in the corresponding SAT instance. As N increases, the size of SAT instances increases linearly, while the CPU time increases exponentially. This reflects NP-hardness of JSSP.

The only exception is the result of $N=678$, which is much easier than $N=677$. The main reason is that $N=678$ is satisfiable while $N=677$ is unsatisfiable. We finish solving $N=678$ when a truth assignment satisfying $N=678$ is found. Therefore, we should examine the whole search.

<table>
<thead>
<tr>
<th>N</th>
<th>Number</th>
<th>CPU (secs)</th>
<th>Satisfiable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variables</td>
<td>Clauses</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>402580</td>
<td>2026319</td>
<td>7463.37</td>
</tr>
<tr>
<td>665</td>
<td>404980</td>
<td>2056717</td>
<td>39210.50</td>
</tr>
<tr>
<td>666</td>
<td>405580</td>
<td>2064404</td>
<td>50485.40</td>
</tr>
<tr>
<td>669</td>
<td>407380</td>
<td>2086838</td>
<td>183690.10</td>
</tr>
<tr>
<td>670</td>
<td>407980</td>
<td>2094796</td>
<td>27216.70</td>
</tr>
<tr>
<td>678</td>
<td>412780</td>
<td>2158273</td>
<td>293.05</td>
</tr>
</tbody>
</table>
ABZ9 problem solving is difficult, which was deducted on the cluster machine usually [3]. This paper greatly improves the efficiency of the operation by optimizing the coding method and research method. In table III, the comparison of the number of clauses produced is shown.

TABLE III. THE COMPARISON OF NUMBER OF CLAUSES PRODUCED

<table>
<thead>
<tr>
<th>N</th>
<th>Number Clauses</th>
<th>Code reduction</th>
<th>reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After optimization</td>
<td>before optimization</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>2026319</td>
<td>4402236</td>
<td>2375917</td>
</tr>
<tr>
<td>665</td>
<td>2056717</td>
<td>4429756</td>
<td>2373039</td>
</tr>
<tr>
<td>666</td>
<td>2064404</td>
<td>4436636</td>
<td>2372232</td>
</tr>
<tr>
<td>669</td>
<td>2086838</td>
<td>4457276</td>
<td>2370438</td>
</tr>
<tr>
<td>670</td>
<td>2094796</td>
<td>4464156</td>
<td>2369360</td>
</tr>
<tr>
<td>678</td>
<td>2158273</td>
<td>4519196</td>
<td>2360923</td>
</tr>
</tbody>
</table>

Use this encoding method, we get the optimal solution with just 308359.122s CPU time (7463.37 + 39210.5 + 50485.4 + 183690.1 + 27216.7 + 293.052 = 308359.122), while the result of the previous study is 1187257s CPU time [3] (6595 + 8946 + 10363 + 12673 + 14279 + 16616 + 21905 + 26847 + 39692 + 42939 + 64439 + 104448 + 119798 + 132638 + 240493 + 268354 + 45702 + 10530 = 1187257). At the same time, we deduct the code processing environment requirements from the cluster machine into the personal computer.

Conclusions

Compared with the traditional inexact solution algorithm, the SAT algorithm can find the optimal solution, which will play an extremely important role in improving the production efficiency. It can not only be used as a solution to the static scheduling problems, but also as the solution of the non-optimal solution performance comparison benchmark.

Although the SAT algorithm has been used to solve the Scheduling problem before, it takes a long time to get the solution because of the complexity of the problem. In this paper, based on the analysis of these solutions, we optimized the SAT coding. Experiments show that it is effective to optimize the coding. It not only reduces the time to get the solution, but also reduces the requirements for the computer.

Next, we will continue to optimize the coding and do some other jobs, trying to solve more complex problems, such as ABZ8, YN2, YN3, YN4, etc.

Acknowledgements

This work was financially supported by the industry and information integration of the Sichuan economic and Information Committee(2016)118.

References

