Effects of Grape Seedlings Intercropping with Floricultural Accumulator Plants on Soil Enzyme Activities under Cadmium Stress

Piao Liu¹,a, Huifen Zhang²,b and Lijin Lin¹,c*

¹Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
²College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
a liufei569@qq.com, b 1042335395@qq.com, c llj800924@qq.com
*Corresponding author. Piao Liu and Huifen Zhang contributed equally to this work.

Keywords: Intercropping; Grape Seedlings; Soil Enzyme Activity; Floricultural accumulator plant

Abstract: The effects of intercropping with four floricultural accumulator plants (Helianthus annuus, Cosmos sulphureus, Cosmos bipinnata, Impatiens balsamina) on soil enzymes activity and soil organic matter of grape seedlings under cadmium (Cd) stress were studied by a pot experiment. The results showed that intercropping H. annuus reduced the content of soil organic matter and soil catalase activity as compared with monoculture of grape seedlings. The intercropping C. sulphureus reduced the soil urease activity content and the intercropped C. bipinnata decreased the soil sucrase activity content. Only the grape seedlings intercropping I. balsamina increase soil enzyme activity. Therefore, the intercropping of I. balsamina grape seedlings can increase soil enzyme activity and improve soil fertility.

Introduction

The cadmium (Cd) is one of the most toxic heavy metal elements that harmful to the growth of plants and human health [1]. With the development of mining, smelting, thermal power generation and industrialization, soil heavy metal pollution has become a worldwide problem [2]. As a component of soil, the activity of enzyme can sensitively reflect the direction and intensity of biochemical reaction in soil [3]. Grape is one of the longest cultivated fruit tree in the world, which is an important branch of China's agricultural industry, with high nutritional and economic value [4]. It has been found that intercropping is able to improve the soil environment and make full use of resources [5-6]. Helianthus annuus [7], Cosmos sulphureus [8], Cosmos bipinnata [9], Impatiens balsamina [10] were used to intercropping with grape measure soil enzyme changes in study, and effects of intercropping grape seedlings and four floricultural accumulator plants on soil enzyme activities were studied. The purpose of this experiment is to find the best floricultural accumulator plant and grape intercropping model to promote soil enzyme activity.

Materials and Methods

Materials Collection. The seeds of floricultural accumulator plants (H. annuus, C. sulphureus, C. bipinnata, I. balsamina) were collected from the farmland of Chengdu Campus of Sichuan Agricultural University and were put into the tray to germinate in April, 2016. The cultivar of grape is Kyoho with cutting seedlings. The fluvo-aquic soil samples were collected from the farmland at Chengdu Campus of Sichuan Agricultural University in April, 2016.

Experimental Design. In May 2016, three uniform-sized cutting seedlings (the shoots were about 15 cm) of Kyoho grape were transplanted into pot for monoculture. One uniform-sized seedling (two pairs leaves expanded) of each floricultural accumulator plant and two grape seedlings were transplanted into each pot for intercropping. The five treatments in experiment were monoculture of grape, grape intercropped with H. annuus, grape intercropped with C. sulphureus, grape intercropped with C. bipinnata and grape intercropped with I. balsamina. Three replicates per treatment and the pots placed completely random. The distance between pots was 15 cm, and the pot position exchanged aperiodically to weaken the impact of the marginal effects. The soil moisture content was maintained at 80% of field capacity until the plants were harvested. After
removing the sample from the plant roots, stones, etc, and then dry at room temperature, grinding, 6.72-mm sieve, bagged airtight standby.

Statistical Analyses. Statistical analysis was carried out by using SPSS 20.0 statistical software. The data were analyzed by one-way ANOVA, with the least significant difference at the 5% confidence level.

Results and Discussion

Soil Organic Matter. The intercropping of grape seedlings and four floricultural accumulator plants significantly increased the content of soil organic matter (Fig. 1). Soil organic matter content by intercropping arrangement: intercropping with I. balsamina > intercropping with C. sulphureus > Intercropping with C. bipinnata > intercropping with H. annuus (Fig. 1). Compared with monoculture, intercropping with I. balsamina and intercropping with C. sulphureus significantly increased organic matter content in grape seedlings, respectively is 23.9% \((p < 0.05) \), 9.6% \((p < 0.05) \), intercropping with C. bipinnata and intercropping with H. annuus did not significantly increase the content of soil organic matter in grape seedlings (Fig. 1).

Soil Catalase Activity. Intercropping with I. balsamina, intercropping with C. sulphureus and intercropping with C. bipinnata increased the amount of soil catalase activity, while intercropping with H. annuus reduced soil catalase activity (Fig. 2). The contents of catalase activity in the grape seedlings were arranged in the intercropping mode: intercropping with C. sulphureus > intercropping with C. bipinnata > intercropping with I. balsamina > intercropping with H. annuus (Fig. 2). So, under the stress of Cd, intercropping treatments can improve the soil catalase activity.

Soil Phosphatase Activity. Intercropping with H. annuus, intercropping with C. sulphureus, intercropping with C. bipinnata, intercropping with I. balsamina increased of soil phosphatase activity by 51.5% \((p < 0.05) \), 22.3% \((p < 0.05) \), 19.8 % \((p < 0.05) \), 30.9% \((p < 0.05) \), under Cd stress, compared with monoculture, respectively (Fig. 3). The content of soil phosphatase activity was intercropped as follows: intercropping with H. annuus > intercropping with I. balsamina > intercropping with C. sulphureus > intercropping with C. bipinnata (Fig. 3).

Soil Urease Activity. Compared with monoculture, intercropped with I. balsamina, intercropping with H. annuus, and intercropping with C. sulphureus on the soil urease activity content is not affected (Fig. 4). Intercropping with H. annuus increased soil urease activity content, increase of 16.3% \((p < 0.05) \) (Fig. 4). Soil urease activity content intercropping: intercropped with H. annuus > intercropping with I. balsamina > intercropping with C. sulphureus > intercropping with C. bipinnata (Fig. 4).

Soil Invertase Activity. Intercropping with H. annuus, intercropping with C. sulphureus and intercropped with I. balsamina increased soil invertase activity content by 13.4% \((p < 0.05) \), 14.3% \((p < 0.05) \), 4.9% \((p < 0.05) \), intercropping with C. bipinnata decreased soil sucrase activity by 5.8% \((p < 0.05) \) (Fig. 5). Soil invertase activity content was intercropped as follows: intercropping with C. sulphureus > intercropping with H. annuus > intercropped with I. balsamina > intercropping with C.bipinnata (Fig. 5).
Conclusions

Under Cd stress, grape seedlings intercropping with *H. annuus*, *C. sulphureus*, *C. bipinnata* and *I. balsamina* affected soil enzyme activity. Compared with the grape seedlings monoculture, intercropped with *I. balsamina* significantly increased all the content of soil enzymes activity, intercropping with *H. annuus* reduced the content of soil organic matter and soil catalase activity, intercropping with *C. sulphureus* reduce soil urease activity content, intercropping with *C. bipinnata*, *I. balsamina*.
bipinnata reduced content of soil urease activity, and soil invertase activity. These results suggest that interplanting with *I. balsamina* between grape seedlings can increase soil enzyme activity and increase soil fertility, while other intercropping treatments do not.

Acknowledgements

This work was financially supported by the Application Infrastructure Project of Science and Technology Department of Sichuan Province (2016JY0258).

References

