Design Of Compact 180 Degree Hybrid Coupler Using T-shape Structure.

B. Pavithra1, Dr.S.Maheswari2
PG Student1, Professor2, Department of Electronics and Communication Engineering
Panimalar Engineering College, Chennai, India
pavipavithra509@gmail.com,maheswarisp@yahoo.co.in

Abstract— The Hybrid couplers are the bidirectional couplers which can give equal power split and 180° phase shift between the two output ports. At lower frequencies the size of the rat race coupler becomes larger. Hence, the size of hybrid coupler should be reduced in order to agree with application requirements. Reduction of hybrid coupler size is achieved by replacing each \(\frac{1}{4} \) section using T-shape structures for different characteristic impedance. The hybrid ring with T-shape structure and conventional hybrid coupler is compared. By using T-shape structure 88% of size reduction has been achieved.

Keywords— Hybrid coupler using T-shape structure; Hybrid Coupler;

I. INTRODUCTION

The rat-race hybrid ring is an important structure in microwaves. It is a four port junction with 180 degree phase shift between two ports[1]. The mono-pulse comparator uses four hybrid couplers and gathers angular position from one pulse[2]. The port which providing the out-of phase division is called as \(\Delta \)-port and the one providing is in phase signal division called as \(\Sigma \)-port[3].

![Figure 1. 180 degree hybrid coupler](image)

A ring coupler consists of line of electrical length which contains standing waves, to which four arms are connected at interval [4]. The Rat- race coupler has two main disadvantages which is difficult to solve.

Initially, the undesired interference occur when conventional rat- race coupler work at its odd harmonics [6].

The Microstrip hybrid coupler is designed by applying the conventional hybrid coupler using T-shape structure. The designed structure can achieve both reduction of size and undesired interference.

The efficient devices operating in high data rate and low power signal are used in wireless Technology. The researchers working on development of RF technology to get that result. In order to meet the circuit miniaturization in wireless communication, it requires smaller device size. Thus, size reduction becoming major design requirement for practical applications.

II. RAT-RACE HYBRID COUPLER

The conventional rat-race coupler has four ports, each placed \(\frac{1}{4} \) length away from each other around one half of the ring. The another half of the ring is \(\frac{3}{4} \) in length. The characteristic impedance of ring should be \(\sqrt{2} \) times the characteristic impedance of the ports. If using port 2 as input ports, equal phase and amplitude signals emerge from port 1 & port 3 and port 4 is isolated. If using port 1 as input port, equal phase and amplitude signals emerge from port 2 & port 4 and port 3 is isolated. When used as a power combiner, signals are fed to port 1 & port 3. Difference signals available at port 4 and sum signals are available at port 2. If input is fed on port 1 and output signals will split at ports 2 and 4 and port 3 will be isolated. The rat-race circuit is used for combining two different signals or dividing the signals into two signals. The port which providing the out-of phase division is called as \(\Delta \)-port and the one providing is in phase signal division called as \(\Sigma \)-port. The scattering matrix for conventional rat-race coupler is

\[
S = \frac{-j}{\sqrt{2}} \begin{pmatrix}
0 & 1 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0
\end{pmatrix}
\]

![Figure 2. Rat-Race Hybrid Coupler](image)

The rat-race coupler is used in many microwave devices such as power amplifiers, mixers, antenna systems, bandwidth in power dividing distribution, and a high isolation between the ports. Satellite communication, phased array radar antenna systems and radar are some applications where rat-race couplers are used widely.
III. HYBRID RING USING T-SHAPE STRUCTURE

The size of the hybrid coupler is reduced using T-shape structure by considering the \(\frac{\lambda}{4} \) length transmission line to be implemented using T-shape structure as shown. Hence, the ABCD parameters of \(\frac{\lambda}{4} \) length transmission line and T-shape structure should be same.

![Figure 3. \(\frac{\lambda}{4} \) length transmission line and its equivalent T-shape structure](image)

The line \((Z_2, \theta_2)\) is represented as open circuited shunt stub which is shown. By knowing the \((Z_2, \theta_2)\) line, the ABCD parameters of the T-shape structure can be found. The shunt stub specified above is replaced by shunt impedance \(Z_{\text{shunt}}\), where,

\[Z_{\text{shunt}} = -\frac{Z_1}{\tan \theta_1} \]

![Figure 4. T-shaped structure and shunt impedance is replaced instead of shunt stub.](image)

The ABCD matrix for the above given shunt impedance is given as:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
\frac{1}{Z_{\text{shunt}}} & 0 \\
-\frac{1}{Z_{\text{shunt}}} \tan \theta_1 & 1
\end{bmatrix}
\]

Similarly, the ABCD matrix calculated for the T-shape structure is expressed as

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix} = \begin{bmatrix}
\cos \theta_1 & jZ_2 \sin \theta_1 \\
-jZ_2 \sin \theta_1 & \cos \theta_1
\end{bmatrix} \begin{bmatrix}
1 & 0 \\
\frac{1}{Z_2} \tan \theta_1 & 1
\end{bmatrix}
\]

The values of \(\theta_1 \) and \(\theta_2 \) and total electrical length \(\theta_T \) is calculated using

\[\theta_T = 2\theta_1 = 2 \tan^{-1} \left(\frac{1}{M} \right) \]

The total electrical length value depend only on \(M \). From the above statement it states that the total electrical length decreases as \(M \) increases but for certain \(K \) there is a limit of choosing the value \(M \). In order to avoid the overlapping between stub lines in each branches the values of \(\theta_2 \) must not exceed the value of \(\theta_1 \).

The impedance values \(Z_1 \) and \(Z_2 \) are calculated by

\[Z_1 = MZ_0 \]
\[Z_2 = \frac{Z_1}{K} \]

IV. COUPLER DESIGN AND ANALYSIS

In the given proposed model the dielectric material is FR4 (\(\varepsilon_r=4.4 \)) and height is \(h=1.6 \text{mm} \) for the operating frequency=2.4GHz. The \(\frac{w}{h} \) ratio is chosen as \(< 2 \).

Conventional Coupler dimension are calculated using the following formulas

(i) The Width for input \((Z = 50\Omega)\) and width for branches \((Z_A = Z_B = 70.7\Omega)\) is calculated using the formula

\[\frac{w}{h} = \frac{8\varepsilon_r A}{e^{2A-2}} \quad \text{for} \quad \frac{w}{d} < 2 \]

where, \(A = \frac{Z}{60} \left(\frac{\varepsilon_r+1}{\varepsilon_r+1} + \frac{\varepsilon_r-1}{\varepsilon_r+1} \right) (0.23 + \frac{0.11}{\varepsilon_r}) \)

(ii) The effective dielectric constant \(\varepsilon_{\text{eff}1}(Z_A= 50\Omega) \) and \(\varepsilon_{\text{eff}2} \) for Branches \((Z_A = Z_B = 70.7\Omega)\) is calculated using

\[\varepsilon_{\text{eff}} = \frac{\varepsilon_r+1}{2} + \frac{\varepsilon_r-1}{2} \left(\frac{1}{\sqrt{1+12\frac{h}{w}}} \right) \]

(iii) The Wavelength is calculated with the known \(C = 3 \times 10^8 \text{m/s} \) (velocity of light) and with given operating frequency \(f= 2.4 \text{GHz} \)

\[\lambda_0 = \frac{c}{f} \]
\[\lambda_g = \frac{\lambda_0}{\sqrt{\varepsilon_{\text{eff}2}}} \]

(iv) The outer and inner radius of the Rat-Race coupler is calculated using

\[R = \frac{3\lambda_g}{4\pi} \]

Inner radius of the ring \((r) = \left(r - \frac{w}{2} \right) \)
Outer radius of the ring \((r_1) = \left(r + \frac{w}{2} \right)\)

Hence the calculated parameters to design hybrid coupler at frequency 2.4GHz like width for input, width for branches, radius of the ring, inner radius, outer radius, and wavelength is listed in the table given below.

TABLE I. PARAMETERS FOR CONVENTIONAL HYBRID COUPLER

<table>
<thead>
<tr>
<th>S.no</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Frequency</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Width for input</td>
<td>3.0608mm</td>
</tr>
<tr>
<td>3.</td>
<td>Width for branches</td>
<td>1.6227mm</td>
</tr>
<tr>
<td>4.</td>
<td>Radius</td>
<td>16.749mm</td>
</tr>
<tr>
<td>5.</td>
<td>Inner radius</td>
<td>15.937mm</td>
</tr>
<tr>
<td>6.</td>
<td>Outer radius</td>
<td>17.560mm</td>
</tr>
</tbody>
</table>

The conventional hybrid coupler is designed and simulated using the above values and shown in Figure 5.

The figure 6 & 7 shows the return loss parameters, Isolation and coupling coefficients of the conventional rat-race coupler.

Hybrid coupler using T-Shape structure is designed and simulated using the formula given in section III and it is shown in Figure 8.
Simulated results for hybrid coupler using T-shape structure

Figure 9. Simulated results for hybrid coupler using T-shape structure
(S_{11}, S_{22}, S_{33}, S_{44})

Figure 10. Simulated results for hybrid coupler using T-shape structure
(S_{21}, S_{31}, S_{41})

Figure 9 & 10 shows the return loss parameters, Isolation and coupling coefficient of the conventional rat-race coupler using T-shape structure.

The size of conventional hybrid coupler is 44.68mm * 50mm. By using T-shape in hybrid coupler the size is reduced to 15.3mm * 17.456mm. Thus, by using T-shape structure 88% of size reduction has been achieved which is shown in Figure 8.

<table>
<thead>
<tr>
<th>TABLE II.</th>
<th>COMPARISON TABLE OF CONVENTIONAL HYBRID COUPLER AND CONVENTIONAL HYBRID COUPLER USING T-SHAPE STRUCTURE OF RETURN LOSS PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No</td>
<td>Types of rat-race</td>
</tr>
<tr>
<td>1.</td>
<td>Conventional Hybrid coupler</td>
</tr>
<tr>
<td>2.</td>
<td>Conventional hybrid coupler using T-shape structure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE III.</th>
<th>COMPARISON TABLE OF CONVENTIONAL HYBRID COUPLER AND CONVENTIONAL HYBRID COUPLER USING T-SHAPE STRUCTURE OF ISOLATION(S_{41}) AND COUPLING COEFFICIENT(S_{31}, S_{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No</td>
<td>Types of rat-race</td>
</tr>
<tr>
<td>1.</td>
<td>Conventional Hybrid coupler</td>
</tr>
<tr>
<td>2.</td>
<td>Conventional hybrid coupler using T-shape structure</td>
</tr>
</tbody>
</table>

From table 3 and table 4 it is observed that the operating frequency 2.4GHz is shifted to 2.9GHz and the size of hybrid coupler is reduced by using T-shape structure.

V. CONCLUSION

In this paper, the conventional rat race hybrid coupler using T-shape is presented. The spurious harmonic suppression and reduction of size at desired frequency can be achieved in the rat-race hybrid coupler. Using T-shape structure in hybrid coupler reduces large amount of size than conventional rat-race hybrid coupler. The conventional hybrid coupler is 44.68mm * 50mm. by using T-shape in hybrid coupler the size is reduced to 15.3mm * 17.456mm. By using T-shape structure 88% of size reduction has been achieved.

REFERENCES

