Research on the Mathematical Modeling of Damping Controlled Oil Gas Spring

Yijie Chen*, Yafeng Zhang, Mengyan Xu, Fu Du and Peng Gui
China North Vehicle Research Institute, Beijing, China
*Corresponding author

Abstract—In order to improve the vehicle performance, the mathematical model and experimental research of damping controlled oil gas spring were carried out in this paper, a proportional throttle valve was installed on the basis of the original damping valve system. The proportional valve adopted slide valve structure and had 15 gear adjustment positions, through regulating the current intensity to achieve the purpose of controlling valve opening and flow. After that, the flow coefficient was fitted by comparing the valve flow through the flow test, which could make the analytical calculation of damping characteristics realize conveniently. Compared with the experimental data, the maximum calculation error could be controlled to 5.6%.

Keywords—damping controlled; oil gas spring; proportional valve; mathematical modeling

I. INTRODUCTION

For the passive suspension, when the damping valve structure parameters was determined, the system output force cannot be adjusted in a large range, and the mobility and manipulation stability are difficult to achieve to the ideal condition on different road conditions and the vehicle speed[1]. According to the semi-active suspension structure principle, the electromagnetic proportional control valve is mounted outside the oil gas spring for using the high pressure pipeline, and it connects parallel with damping valve. The control valve throttle area could be adjusted through changing the current intensity, and the damping force also could be changed following the current.

II. STRUCTURE AND WORKING PRINCIPLE

As shown in FIGURE I, it is oil gas spring structure diagram. Control valve connected to upper and lower chambers of the oil gas spring through pressure pipelines. The damping valve with throttle slice was mounted inside the piston, when the piston reciprocating movement, throttle slice will be deformed because differential pressure of upper and lower chamber. The oil and nitrogen were isolated by floating piston, and the gas chamber length was changed through the oil gas spring displacement.

As shown in FIGURE II, it is oil gas spring equivalent flow diagram. In which \(Q \) is oil gas spring flow, \(Q_d \) is the control valve flow, \(Q_f \) is damping valve flow, \(Q_g \) is passing oil orifice flow, and \(Q_{gk} \) is the high pressure pipeline flow.
Because the control valve of oil flow passage is more complex, so it is difficult to accurately analyze the flow field structure using analytic method. In this article, the least square method is used to fit the test data curve of control valve, and the following function expression is selected for parameter approximation\[2-4\]:

$$k = C_k \sqrt{\frac{2\Delta p_k}{\rho}}$$

(1)

In which, C_k is control valve flow coefficient.

The flow residual error square expression is:

$$\Pi = \sum_{i=1}^{n} (Q_k - Q_{ki})^2 = \sum_{i=1}^{n} \left(C_k \sqrt{\frac{2\Delta p_{ki}}{\rho}} - Q_{ki}\right)^2$$

(2)

In which, Q_{ki} is control valve flow test data, Δp_{ki} is the pressure difference of test data, $i(1, 2 \cdots n)$ is a data group.

$$\frac{\partial \Pi}{\partial C_k} = 2 \sum_{i=1}^{n} \frac{2\Delta p_{ki}}{\rho} \left(C_k \sqrt{\frac{2\Delta p_{ki}}{\rho}} - Q_{ki}\right) = 0$$

(3)

The flow coefficient formula is:

$$C_k = \sqrt{\frac{\rho}{2}} \frac{\sum_{i=1}^{n} Q_{ki}}{\sum_{i=1}^{n} \sqrt{\Delta p_{ki}}}$$

(4)

The test data curve fitting is shown in FIGURE IV, and control valve flow coefficient of different current is shown in TABLE I.

TABLE I. CONTROL VALVE FLOW COEFFICIENT OF DIFFERENT CURRENT

<table>
<thead>
<tr>
<th>I / A</th>
<th>0</th>
<th>0.3</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_k / mm^2</td>
<td>12.69</td>
<td>9.92</td>
<td>0</td>
</tr>
</tbody>
</table>

B. Units Damping Force of Semi Active Oil Gas Spring

The gap flow formula is:

$$Q_f = \frac{\pi r \Delta p \delta^3}{6 \mu n h}$$

(5)

In which, μ is oil dynamic viscosity, n is the number of valve slice, h is the slice thickness, r_n is the outer radius, Δp is total pressure of oil gas spring, δ is annular gap width.

The total pressure of oil gas spring is:

$$\Delta p = \Delta p_i = \Delta p_k$$

$$A_v V_d = \frac{\pi r_n \Delta p \delta^3}{6 \mu n h} + C_k \sqrt{\frac{2\Delta p}{\rho}}$$

(6)

In which, A_v is the piston area, V_d is the piston velocity, ρ is the oil liquid density.

And the differential pressure is:

$$\Delta p = \frac{6 \mu n h}{\pi r_n \delta^3} (A_v V_d - Z_2)$$

(7)

In which,

$$Z_1 = \sqrt{18C_k^2 \mu^2 n^2 h^2 + 6\pi r_n \rho \delta^3 A_v V_d \mu n h}$$
The slice turbulent flow formula:

\[
Z_2 = \frac{C_k (6\sqrt{2}C_k \mu nh + 2Z_1)}{\sqrt{2\pi n \rho \delta^3}}
\]

The total pressure difference of semi active suspension is:

\[
Q_i = 2\pi r_a \left[-127.79 v + \left(3 + 2.5 \ln \left(\frac{\Delta \rho \delta^3}{8v^2 n h \rho} \right) \right) \right] \left(\frac{\Delta \rho \delta^3}{2n h \rho} \right) \tag{8}
\]

\[
Z_3 = 127.79v + \frac{A_g}{2\pi r_a} \sqrt{2\Delta p_g} \xi_g \rho
\]

\[
Z_3 = \frac{A_g V_d - C_k \sqrt{2\Delta p_g}}{2\pi r_a} + 127.79v \tag{9}
\]

\[
\Delta p_k = \frac{A_g}{C_k} \Delta p_{gk}
\]

\[
\Delta p = \Delta p_t + \Delta p_g = \Delta p_k + \Delta p_{gk}
\]

In which, \(A_g\) is passing oil orifice cross-sectional area, \(A_{gk}\) is cross-sectional area of pressure pipeline, \(\xi_{gk}\) is the local resistance loss coefficient, \(\xi_g\) is the local resistance loss coefficient of passing oil orifice.

C. The Test And Simulation

TABLE II. KEY POINT FORCE WHEN CURRENT \(I = 1.5A\)

<table>
<thead>
<tr>
<th>The force name</th>
<th>(F_{z_{max}}) (kN)</th>
<th>(F_{z_{min}}) (kN)</th>
<th>(F_{z_{y0}}) (kN)</th>
<th>(F_{z'_{y0}}) (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test data</td>
<td>56.99</td>
<td>11.29</td>
<td>41.44</td>
<td>17.23</td>
</tr>
<tr>
<td>Simulation data</td>
<td>57.55</td>
<td>11.95</td>
<td>41.63</td>
<td>16.54</td>
</tr>
<tr>
<td>Data error (%)</td>
<td>0.97</td>
<td>5.52</td>
<td>0.46</td>
<td>5.6</td>
</tr>
</tbody>
</table>

From the above chart can be seen, the deviation of simulation results and experimental data is very small, and it is verified that oil gas spring mathematical model and the control valve data fitting method are correct.

REFERENCES

