Predict Physics Achievement in Middle School Education by Big Five Model and Artificial Neural Network

Meng-Meng Yang
School of Computer Science and Technology
Nanjing Normal University
Nanjing, Jiangsu 210023, P R China
1320981274@qq.com

Soriya Aok
Faculty of Science and Technology
Angkor University
Borey Seang Nam, Siem Reap Province, Cambodia

John Liu
College of Engineering
Michigan State University
East Lansing, MI 48823, USA

Abstract—In order to predict physics achievement in middle school, this paper proposed a new method based on big five model. First, we collected 300 samples, in which 150 passed and the other 150 failed the final physics examination. Then, we submitted the five demographic features and five big-five personality trait features to the artificial neural network (ANN). Third, we used back propagation algorithm to train the ANN. The cross validation results show that our method yielded a sensitivity of 83.00± 2.09%, a specificity of 82.73± 4.12%, and an accuracy of 82.87± 2.75%.

Keywords—big five model; physics achievement; middle school; artificial neural network; back propagation neural network;

I. INTRODUCTION

The big five personality traits [1], containing openness, conscientiousness, extraversion, agreeableness, and neuroticism (abbreviated as OCEAN) as shown in Fig. 1, are an important psychological model to describe personality for non-only human but also animals like chimpanzees.

Scholars have used the big five personality trait model to predict human behaviors. For example, Nagle [2] used big five to predict video game mechanics based on individual personality. Nishimura [3] studied the satisfaction and frustration in Japan. León [4] investigated the experiences in public sectors, and induced they were related to personality traits.

In this study, we used a five-attribute basic demographic features and a five-attribute big five features, and stretch it out to a ten-entry vector. We then used a pass/fail as the output. We establish an artificial neural network (ANN) to establish mapping between the input and the output.

The structure of this paper is as follows. Section II describes the collected materials. Section III describes the methodology used. Section IV contains the experiments and results. Section V offers the concluding remarks.

II. MATERIALS

A. Subjects

We enrolled in total 300 junior middle school students (100 in Grade 7, 100 in Grade 8, and 100 in Grade 9). We also record their genders, ages, one-child attribute, and locations. The possible values of each attribute were listed in Table 1.

| TABLE I. DEMOGRAPHICS OF 60 SUBJECTS FROM A JUNIOR MIDDLE SCHOOL |
|-----------------|----------------|
| Characteristics | Value |
| Gender | Male, Female |
| Age | 11, 12, 13, 14, 15, 16 |
| One-Child | No, Yes |
| Location | City, Suburb |
| Grade | Grade 7, Grade 8, Grade 9 |
B. Big Five Test

We used the shortened version, 60-item inventory, NEO-Five Factor Inventory (NEO-FFI) to test the personal trait of each student. Table 2 shows the personality dimension plot of big five model.

<table>
<thead>
<tr>
<th>Personality Dimension</th>
<th>Facets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openness to experience</td>
<td>Aesthetics, Fantasy, Feelings, Ideas, Values, Actions,</td>
</tr>
<tr>
<td></td>
<td>Hostility, Anxiety, Depression,</td>
</tr>
<tr>
<td></td>
<td>Impulsiveness, Self-Consciousness,</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>Vulnerability to Stress</td>
</tr>
<tr>
<td>Extraversion</td>
<td>Activity, Warmth, Assertiveness,</td>
</tr>
<tr>
<td></td>
<td>Excitement Seeking, Gregariousness,</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>Order, Competence, Dutifulness,</td>
</tr>
<tr>
<td></td>
<td>Achievement Striving, Deliberation, Self-Discipline,</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>Modesty, Trust, Altruism, Compliance,</td>
</tr>
<tr>
<td></td>
<td>Tendermindedness, Straightforwardness,</td>
</tr>
</tbody>
</table>

C. Physics Achievement

In this study, we used the scores of final examination of corresponding grades. For simple, we set the scores over than 60 as pass, and set scores less than 60 as fail. To balance the dataset, we chose 150 students who passed the final exam, and chose another 150 students who failed the final exam.

<table>
<thead>
<tr>
<th>Categories of Scores</th>
<th>Scores</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>=60</td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td><60</td>
<td>Fail</td>
</tr>
</tbody>
</table>

III. METHODOLOGY

There are many methods used for classification. For example, the logistic regression [5] is an improved version of basic linear classifier. Decision tree [6-8] can be regarded as using rules on each attribute, the support vector machine (SVM) [9-17] is a linear classifier using samples lying in the hyperplanes, i.e., support vectors. Fuzzy SVM [18-21] integrated the fuzzy membership function into SVM. Artificial neural network (ANN) [22-26] is an extension of perceptron, and can be trained in back propagation style with descent gradient algorithm. Extreme learning machine [27-29] has a similar structure of ANN, but part of its weights are randomly generated and fixed.

On the other hand, deep learning is the hottest field in classification of very large dataset. The convolutional neural network [30-32] and auto encoders [33-35] are two common models in deep learning.

Nevertheless, our collected 300-sample dataset is too small to use deep learning. Hence, we turn to use traditional artificial neural network due to the universal approximation theory.

A. Artificial Neural Network

The commonly used artificial neural network (ANN) contains three layers. The input layer receives the fed features extracted from each samples. The hidden layer contains several hidden neurons. The number is usually determined beforehand. The output layer usually contains the same number of classes, i.e., gives scores for each class [36, 37]. Finally, the class with the maximum score will be selected as the predicted class. The activations for both hidden layer and output layer are Sigmoid function defined as

$$S(x) = \frac{1}{1 + \exp(-x)}$$ \hspace{1cm} (1)

In this study, we chose the structure of ANN is 10-15-2. That means: we have 10 input neurons, 15 hidden neurons, and 2 output neurons.

B. Cross Validation

6-fold cross validation was used to get the unbiased error. That means, we segment the dataset into six parts, each containing 50 samples. Then, in each trial, we used five folds as training, and the rest for test. We repeated above trial six

...
times, and each time a new fold is used as the test set. Fig. 3 shows a diagram of 6-fold cross validation method.

IV. EXPERIMENTS AND RESULTS

A. Statistical Analysis of Proposed Method

We used a 10x6-fold cross validation for checking the classification performance our method. Each fold contains 50 samples. The sensitivity, specificity, and accuracy results are shown in Table 4, Table 5, and Table 6, respectively. Those tables show that our method yielded a sensitivity of 83.00± 2.09%, a specificity of 82.73± 4.12%, and an accuracy of 82.87± 2.75%.

B. Confusion Matrix

The confusion matrices of proposed method and ideal situation were plotted in Fig. 4. We can observe that both confusion matrices have a summation of 3,000, which is the 10 times of the size of dataset. For the ideal confusion matrix, 0 errors were made. By contrary, our proposed method misclassified 255 pass samples to fail, and misclassified 259 fail samples to pass.

C. Effect of Features

In this experiment, we used only demographic features and only big five features. We measured the classifier by accuracy; the results are depicted in Table 7 and Table 8, respectively.

Here we observe that the accuracy significantly decreased to only 57.17± 2.32% if only using the five demographic features, and slightly decreased to 76.17± 3.53% if only using the five big five features. Hence, we can conclude that the big five is more efficient in predicting physics achievement than demographic features.

V. CONCLUSIONS

In this study, we proposed a new method to predict physics achievements in middle school by big five model and artificial neural network. The results showed the effectiveness of proposed method.

In the future, we shall try to collect more data. In addition, we shall test other classifiers and try advanced optimization methods [38].
ACKNOWLEDGMENT

The paper is financially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX17_0342).

REFERENCES

